ON CYCLES IN NONLINEAR GENE NETWORK MODEL

Minushkina L. S. Novosibirsk State University, Novosibirsk l.minushkina@q.nsu.ru

We consider a six-dimensional dynamical system

$$\frac{dx_j}{dt} = L_j(y_{j-1}) - \Gamma_j(x_j); \quad \frac{dy_j}{dt} = G_j(x_j) - \gamma_j(y_j), \quad j = 1, 2, 3, \ j-1 := 3 \text{ if } j = 1,$$
(1)

simulating circular gene network called a repressilator, see [1]. In this model concentrations of mRNAs and proteins are denoted by x_j , y_j , negative feedback and positive feedback are described by smooth monotone decreasing functions L_j and by smooth monotone increasing functions G_j respectively. The process of degradation is characterized by smooth nonlinear functions Γ_i , γ_i .

characterized by smooth nonlinear functions Γ_j , γ_j . In this paper we assume that the values $\Gamma_j^{-1}(L_j(0))$ and $\gamma_j^{-1}(\sup G_j)$ are defined for all j. All trajectories of this dynamical system are contained in six-dimensional parallelepiped $\mathcal{Q}^6 = \prod_{j=1}^3 [0, \Gamma_j^{-1}(L_j(0))] \times [0, \gamma_j^{-1}(\sup G_j)]$ and do not leave it as time increases. The system (1) has a unique equilibrium point \mathcal{S}_0 in the interior of the invariant domain \mathcal{Q}^6 . We study trajectories of the system (1) containing in subdomain W_1 stated in [2].

The main result of this paper is Theorem 1.

Theorem 1. If the linearization matrix of the system (1) has at least two complex conjugate eigenvalues with positive real part and does not have any pure imaginary eigenvalues in the neighbourhood of S_0 , then the system (1) have a cycle C in the invariant subdomain W_1 .

The cycle C bounds a two-dimensional invariant surface consisting of trajectories of the system (1) as it was noted in [3].

The work has been supported by RSCF project 23-21-00019.

REFERENCES

- Glyzin S. D., Kolesov A. Yu., Rozov N. Kh. Buffering in cyclic gene networks // Theor. Math. Fiz., 2016, V. 187, N 3, P. 560–579.
- Ayupova N. B., Golubyatnikov V. P., Kazantsev M. V. On the existence of a cycle in an asymmetric model of a molecular oscillator // Numerical Analysis and Applications, 2017, V. 10, N 2, P. 101–107.
- Golubyatnikov V. P., Akinshin A. A., Ayupova N. B., Minushkina L. S. Stratifications and foliations in phase portraits of gene network models // Vavilov Journal of Genetics and Breeding, 2022, V. 26, N 8, P. 758–764.