Определяющие уравнения модели фильтрации в деформируемой пористой среде

Роменский Е.И., Перепечко Ю.В.

Оглавление

Определяющие уравнения		
2	1.1.	Система уравнений в консервативных переменных
	Кон	сервативные переменные
	Сис	стема уравнений в изоэнтропийном приближении2
	Век	тор U2
	Век	тор F2
	Век	тор G2
	Век	тор SЗ
2.	Ура	внение состояния трехфазной среды
3.	Зна	чения физических параметров модели4
	3.1.	Физические параметры4
	3.2.	Термодинамические коэффициенты5
3	3.3.	Кинетически коэффициенты

Определяющие уравнения

1.1. Система уравнений в консервативных переменных

Консервативные переменные

$$\rho, \rho \alpha_2, \alpha_2 \rho_2, w_1^{12}, w_2^{12}, \rho u_1, \rho u_2, \rho F_{11}, \rho F_{12}, \rho F_{21}, \rho F_{22}.$$

Система уравнений в изоэнтропийном приближении

Система уравнений двухфазной фильтрации жидкости в упругой пористой среде в двумерном случае :

$$\frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial x} + \frac{\partial G(U)}{\partial y} = S(U).$$

Здесь U - вектор консервативных переменных, F(U), G(U) - векторы потоков, S(U) - вектор правых частей.

Вектор U

$$U(1) = \rho, \qquad U(2) = \rho \alpha_2, \qquad U(3) = \rho_2 \alpha_2, \qquad U(4) = w_1^{12}, \qquad U(5) = w_2^{12},$$
$$U(6) = \rho u_1, \qquad U(7) = \rho u_2, \qquad U(8) = \rho F_{11}, \qquad U(9) = \rho F_{12}, \qquad U(10) = \rho F_{21}, \qquad U(11) = \rho F_{22}$$

Вектор F

$$F(1) = \rho u_{1}, \qquad F(2) = \rho \alpha_{2} u_{1}, \qquad F(3) = \rho_{2} \alpha_{2} u_{1}^{2}, \qquad F(4) = \frac{1}{2} u_{i}^{1} u_{i}^{1} - \frac{1}{2} u_{i}^{2} u_{i}^{2} + e^{1} + \frac{p_{1}}{\rho_{1}} - e^{2} - \frac{p_{2}}{\rho_{2}}, \qquad F(5) = 0,$$

$$F(6) = \alpha_{1} \rho_{1} u_{1}^{1} u_{1}^{1} + \alpha_{2} \rho_{2} u_{1}^{2} u_{1}^{2} + (\alpha_{1} p_{1} + \alpha_{2} p_{2}) - \alpha_{1} \sigma_{11}, \qquad F(7) = \alpha_{1} \rho_{1} u_{1}^{1} u_{2}^{1} + \alpha_{2} \rho_{2} u_{1}^{2} u_{2}^{2} - \alpha_{1} \sigma_{21},$$

$$F(8) = 0, \qquad F(9) = 0, \qquad F(10) = \rho F_{21} u_{1} - \rho F_{11} u_{2}, \qquad F(11) = \rho F_{22} u_{1} - \rho F_{12} u_{2}$$

Вектор G

$$G(1) = \rho u_2, \qquad G(2) = \rho \alpha_2 u_2, \qquad G(3) = \rho_2 \alpha_2 u_2^2, \qquad G(4) = 0, \qquad G(5) = \frac{1}{2} u_i^1 u_i^1 - \frac{1}{2} u_i^2 u_i^2 + e^1 + \frac{p_1}{\rho_1} - e^2 - \frac{p_2}{\rho_2},$$

$$G(6) = \alpha_1 \rho_1 u_1^1 u_2^1 + \alpha_2 \rho_2 u_1^2 u_2^2 - \alpha_1 \sigma_{12}, \qquad G(7) = \alpha_1 \rho_1 u_2^1 u_2^1 + \alpha_2 \rho_2 u_2^2 u_2^2 + (\alpha_1 p_1 + \alpha_2 p_2) - \alpha_1 \sigma_{22},$$

$$G(8) = \rho F_{11} u_2 - \rho F_{21} u_1, \qquad G(9) = \rho F_{12} u_2 - \rho F_{22} u_1, \qquad G(10) = 0, \qquad G(11) = 0$$

Вектор S

$$S(1) = 0, \quad S(2) = -\lambda_{11}(p_1 - p_2), \quad S(3) = 0, \quad S(4) = u_2 \partial_1 w_2^{12} - u_2 \partial_2 w_1^{12} - \chi_{11} c_2 (u_1 - u_1^2),$$

$$S(5) = u_1 \partial_2 w_1^{12} - u_1 \partial_1 w_2^{12} - \chi_{11} c_2 (u_2 - u_2^2), \quad S(6) = 0, \quad S(7) = 0, \quad S(8) = 0, \quad S(9) = 0, \quad S(10) = 0, \quad S(11) = 0.$$

По повторяющимся i везде проводится суммирование, причем i = 1, 2. Здесь

$$\begin{aligned} \alpha_1 &= 1 - \alpha_2, \qquad \rho = \alpha_1 \rho_1 + \alpha_2 \rho_2, \qquad w_i^{12} = u_i^1 - u_i^2, \qquad \rho u_i = \alpha_1 \rho_1 u_i^1 + \alpha_2 \rho_2 u_i^2, \\ c_2 &= \frac{\alpha_2 \rho_2}{\rho}, \qquad e_{ikj} \omega_j^{12} = \partial_i w_k^{12} - \partial_k w_i^{12}, \qquad (e_{ikj} - \text{символ Леви-Чивиты}). \end{aligned}$$

2. Уравнение состояния трехфазной среды

Трехфазная среда характеризуется следующими параметрами: полная плотность среды ρ , относительные скорости фаз w_i^{12} , объемные и массовые содержания жидких фаз α_2, c_2 , тензор градиента деформации F_{ij} и принимается аддитивной по фазам

$$E = c_1 e^1 + c_2 e^2 + \frac{1}{2} (1 - c_2) c_2 w_k^{12} w_k^{12}.$$

Внутренние энергии упругого пористого скелета и жидких фаз $e^1 = e^1(\rho_1, F_{ik}, s), e^2 = e^2(\rho_2, s),$ имеют вид

$$e^{1} = \frac{1}{\left(\rho_{10}\right)^{2}} p_{10} \delta \rho_{1} + \frac{1}{2\left(\rho_{10}\right)^{3}} K_{1} \delta \rho_{1} \delta \rho_{1} + \frac{1}{\rho_{10}} \mu \left(\varepsilon_{ij} \varepsilon_{ij} - \frac{1}{3} \varepsilon_{ll} \varepsilon_{ll}\right), \qquad e^{2} = \frac{1}{\left(\rho_{20}\right)^{2}} p_{20} \delta \rho_{2} + \frac{1}{2\left(\rho_{20}\right)^{3}} K_{2} \delta \rho_{2} \delta \rho_{2}.$$

Здесь $\delta \rho_1 = \rho_1 - \rho_{10}$, $\delta \rho_2 = \rho_2 - \rho_{20}$ - отклонения параметров от равновесных начальных значений.

Выражение для тензора напряжений в упругой фазе через тензор деформации Альманси

$$\sigma_{11} = \frac{\rho_1}{\rho_{10}} 2\mu \left(\left(1 - 2\varepsilon_{11}\right) \left(\varepsilon_{11} - \frac{1}{3} \left(\varepsilon_{11} + \varepsilon_{22}\right) \right) - 2\varepsilon_{12} \varepsilon_{12} \right), \qquad \sigma_{12} = \frac{\rho_1}{\rho_{10}} 2\mu \varepsilon_{12} \left(1 - \frac{4}{3} \left(\varepsilon_{11} + \varepsilon_{22}\right) \right), \\ \sigma_{21} = \frac{\rho_1}{\rho_{10}} 2\mu \varepsilon_{12} \left(1 - \frac{4}{3} \left(\varepsilon_{11} + \varepsilon_{22}\right) \right), \qquad \sigma_{22} = \frac{\rho_1}{\rho_{10}} 2\mu \left(\left(1 - 2\varepsilon_{22}\right) \left(\varepsilon_{22} - \frac{1}{3} \left(\varepsilon_{11} + \varepsilon_{22}\right) \right) - 2\varepsilon_{12} \varepsilon_{12} \right).$$

Здесь (det $F = F_{11}F_{22} - F_{12}F_{21}$)

$$\varepsilon_{11} = \frac{1}{2} \left(1 - \frac{F_{22}F_{22} + F_{21}F_{21}}{\left(\det F\right)^2} \right), \qquad \varepsilon_{12} = \frac{F_{22}F_{12} + F_{21}F_{11}}{2\left(\det F\right)^2}, \qquad \varepsilon_{21} = \frac{F_{22}F_{12} + F_{11}F_{21}}{2\left(\det F\right)^2}, \qquad \varepsilon_{22} = \frac{1}{2} \left(1 - \frac{F_{12}F_{12} + F_{11}F_{11}}{\left(\det F\right)^2} \right),$$

Давления в фазах выражаются соотношениями

$$p_{1} = \frac{(\rho_{1})^{2}}{(\rho_{10})^{2}} \left(p_{10} + \frac{1}{\rho_{10}} K_{1} \delta \rho_{1} \right), \qquad p_{2} = \frac{(\rho_{2})^{2}}{(\rho_{20})^{2}} \left(p_{20} + \frac{1}{\rho_{20}} K_{2} \delta \rho_{2} \right).$$

В формулах μ - модуль сдвига, K_1 - объемный модуль упругости (коэффициент объемного расширения) твердой пористой фазы, K_2 - коэффициенты объемного расширения жидкости.

3. Значения физических параметров модели

3.1. Физические параметры

Плотности пористой матрицы и воды

$$\rho_{10} = 2.5 \cdot 10^3 \, \kappa c / M^3$$
, $\rho_{20} = 1.0 \cdot 10^3 \, \kappa c / M^3$

Объемные содержания фаз

Объемное содержание фаз в формации (во всей области, кроме скважин) $\alpha_{20} = 0.1$, $\alpha_{10} = 0.9$.

Объемное содержание фаз в скважинах

 $\alpha_{20} = 0.99$, $\alpha_{10} = 0.01$.

Давление

 $p_{10} = 10^5 \Pi a$, $p_{20} = 10^5 \Pi a$.

3.2. Термодинамические коэффициенты

Модуль сдвига твердой фазы $\mu = 8.9 \cdot 10^9 \, \kappa c / M \, c^2 = 8.9 \cdot 10^9 \, \Pi a$.

Коэффициенты объемного расширения $K_1 = 3.7 \cdot 10^{10} \, \kappa c / M \, c^2 = 37 \cdot 10^9 \, \Pi a$, $K_2 = 2.25 \cdot 10^9 \, \kappa c / M \, c^2 = 2.25 \cdot 10^9 \, \Pi a$.

3.3. Кинетически коэффициенты

Кинетические коэффициенты λ_{ii}

Коэффициент λ_{11} , характеризующие релаксацию давлений в фазах, можно определить как произведения коэффициента объемного сжатия \mathcal{G}_n (для воды $\mathcal{G}_2 = 0.11 \cdot 10^{-9} \ \Pi a^{-1}$) и плотности двухфазной среды:

$$\lambda_{11} = 0.11 \cdot 10^{-6} c/m^2$$
.

Кинетический коэффициент межфазного трения χ_{11}

Кинетический коэффициент χ_{11} связан с относительной проницаемостью фаз k_{22} и динамической вязкостью η_2

$$\chi_{11} = \frac{\eta_2}{\rho_{20}k_{22}}.$$

Динамическая вязкость воды $\eta_2 = 0.93 \cdot 10^{-3} \, \kappa c / M c = 0.93 \cdot 10^{-3} \, \Pi a \, c$.

Относительная проницаемость $k_{22} = 0.2 \cdot 10^{-12} \text{ м}^2$.

3.4. Источник

Источник типа Рикера

$$F_i^R(t) = A \alpha_i \left(1 - 2\pi^2 f^2 \left(t - t_{in} \right)^2 \right) e^{-\pi^2 f^2 \left(t - t_{in} \right)^2}$$