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I. Basic equation of the BEC dynamics

Gross-Pitaevskii (GP) equation:

i~
∂Ψ

∂t
= − ~2

2m
∆Ψ + g |Ψ|2 Ψ + Vext (r) Ψ.

Here, m is the atomic mass;

as is the s -wave scattering length;

g=4π~2as
/
m is the interaction coupling constant;

Ψ(r, t)= |Ψ(r, t)| exp (iϑ(r, t)) is the classical wave function;

n(r, t)= |Ψ(r, t)|2 is the density of condensate atoms;

v(r, t)=
(
~
/
m
)
∇ϑ(r, t) is the velocity field in the BEC;

Vext (r) is the potential of the external forces acting on the BEC.

as>0 for repulsive interactions between atoms.
,
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Dimensionless variables: r′ = r
/
r0, t′ = t

/
t0, v′ = v

/
cs.

Ψ′=Ψ exp(−it′)
/√
n0, V ′ext=Vext

/
gn0.

r0 = ~
/√
mgn0 is the healing length; t0 = r0

/
cs= ~

/
gn0;

cs =
√

gn0/m is the sound velocity.

Nonlinear Schrödinger (NLS) equation:

i
∂Ψ

∂t
+

1

2
∆Ψ +

(
1− |Ψ|2

)
Ψ = Vext(r) Ψ.

Madelung transform: Ψ(r, t) = ψ(r, t) exp (iθ(r, t)) .
System of hydrodynamic equations for a compressible inviscid liquid:

∂tψ
2 + div

(
ψ2∇θ

)
= 0,

∂tθ + (∇θ)2/2 = 1− ψ2 + ∆ψ
/

2ψ.

We restricted our consideration to the 2D problem: r = (x, y).
,
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II. 2D dark solitons in a homogeneous BEC

The GPequation with Vext(r)=0 has a single-parameter family of solu-
tions in the form of 2D dark solitons moving at a constant velocity v̄:

Ψs=Ψs(ξ, y, v̄), Ψs

(√
ξ2+y2 →∞

)
→1, ξ=x−v̄t, v̄=const.

−iv̄ ∂Ψs

∂ξ
+

1

2

∂2Ψs

∂ξ2
+

1

2

∂2Ψs

∂y2
+
(

1− |Ψs|2
)

Ψs = 0.

Here, the velocity v̄ plays the role of the problem parameter.
Depending on v̄, 2D dark solitons can be “vortex” and “vortex-free”:

the vortex pairs are implemented for 0 < |v̄|<v̄∗;
the vortex-free solitons are implemented for v̄∗< |v̄|<1;
when |v̄| = v̄∗ ≈ 0.61, there is a continuous transition from the
vortex state with two zeroes of the density into a vortex-free state,
in which the density is different from zero everywhere.
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Variation problem: δ
(
H− v̄Px

)
= 0.

Hamiltonian:

H=
1

2

+∞∫
−∞

dy

+∞∫
−∞

dξ

(
|∇Ψ|2+

(
1−|Ψ|2

)2)
.

Momentum:

P=
i

2

+∞∫
−∞

dy

+∞∫
−∞

dξ
(

Ψ∇Ψ∗−Ψ∗∇Ψ
)
.

Integral relations for 2D dark solitons:

(1) Ē ≡ Hs =

+∞∫
−∞

dy

+∞∫
−∞

dξ

∣∣∣∣∂Ψs

∂ξ

∣∣∣∣2 , (2) Ē − v̄P̄ =

+∞∫
−∞

dy

+∞∫
−∞

dξ

∣∣∣∣∂Ψs

∂y

∣∣∣∣2 ,

(3) v̄P̄ =

+∞∫
−∞

dy

+∞∫
−∞

dξ
(

1− |Ψs|2
)2
.

The velocity v̄ of a 2D dark soliton is defined as

v̄ =
dĒ
dP̄

<
Ē
P̄
.
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Vortex 2D dark solitons.
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The limit of small velocities
|v̄| � 1 ⇒ Ē � 1.

In this limit 2D dark soliton solutions are vortex pairs, whose wave function is well
described by the expression

Ψvp(ξ, y, v̄) = ψvp(ξ, y, v̄) exp (iθvp(ξ, y, v̄)) ,

where θvp (ξ, y, v̄) = ϕ1(ξ, y)− ϕ2(ξ, y) is the phase of the vortex pair,
ϕ1(2)(ξ, y) are the polar angles around the points

(
ξ = 0, y = ±l

/
2
)
,

l= l(v̄) is the distance between topological defects (zeroes of the density).
The energy Ē , momentum P̄, and velocity v̄ are related with l as for a pairs of point
vortices:
Ē ≈ 2π ln(l) , P̄ ≈ 2πl, v̄ ≈ 1

/
l. ⇒ P̄

(
Ē � 1

)
= 2π exp

(
Ē
/

2π
)
.
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Vortex-free 2D dark solitons.
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The limit of transonic velocities
(1− |v̄|)� 1 ⇒ Ē � 1. (The value of |v̄| tends to the sound velocity: |v̄|→1.)

In this limit 2D dark soliton solutions coincide with known solutions of the
Kadomtsev-Petviashvili (KP) equation.

Weakly nonlinear limit:

T = ε3/2 t,

X= ε1/2 (x−t), Y = εy,

θ = ε(j−1/2 )θj , n=1+εjnj .

⇓
P̄
(
Ē � 1

)
≈ Ē − 3

128π2
Ē3.

⇒

Kadomtsev-Petviashvili (KP) equation:

∂

∂X

(
2
∂n1
∂T

+3n1
∂n1
∂X
− 1

4

∂3n1
∂X3

)
=−∂

2n1
∂Y 2

.

ns,1
(
ξ, y, v̄=

(
1−ṽkp

))
= εn1 =

=
16ṽkp

[
3− 8ṽkpξ

2 + 16ṽ2kpy
2
][

3 + 8ṽkpξ2 + 16ṽ2kpy
2
]2 .
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Analytical approximation for the dependence P̄
(
Ē
)
:

P̄
(
Ē
)

= α
(
Ē
)

sinh

[
Ē

α
(
Ē
)], α

(
Ē
)

=2π+
2π

3
exp

[
−Ē

2

σ2
Ē

]
, σĒ=9.8.
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III. Asymptotic description of the dynamics
of 2D dark quasisolitons in a smoothly
inhomogeneous BEC

Ψ(r, t) = G(r)F (r, t) .

G(r) is the undisturbed part, which is formed
under the action of the potential Vext(r).

1

2
∆G+

(
1− |G|2

)
G− Vext(r)G = 0.

G(r) = g(r) exp(iθg), θg = const.

ΛG∼ |G|
/
|∇G| is a characteristic scale of

the wave function G(r) of the undisturbed
condensate.
ΛG � rc.
Thomas-Fermi approximation:

ng
TF

(r) = g2
TF

(r) =
(
1− Vext(r)

)
> 0.

F (r, t) is the part of the wave function
Ψ(r, t) describing the behavior of the finite-
amplitude disturbances in an initially inho-
mogeneous BEC.

i
∂F

∂t
+

1

2
∆F + |G|2

(
1− |F |2

)
F =

= −
(
∇G
G

,∇F
)
.

Λqs is a characteristic size of the localiza-
tion region of the considered disturbance
initially specified in the form of a 2D quasi-
soliton structure.

Small parameter: µ = Λqs
/

ΛG � 1.
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A schematic representation of propagation
of a 2D dark quasisoliton moving along
the trajectory r0(s) in a smoothly inhomo-
geneous BEC.
Here, s0 and n0 are the unit vectors of the

tangent and the normal to the pro-
pagation path r0(s), respectively;
s is the arc length;
η is the distance along the normal
dropped on the curve r0(s).

r = r0(s) + η n0(s), η = η (x, y), s = s (x, y).

This equation relates the Cartesian coordinates (x, y) with the orthogonal curvilinear
coordinates (s, η), the transition to which is characterized by the following Lamé
coefficients: hs=(1−κη), hη=1,
where κ=κ(s) is the curvature of the line r0(s), κ ∼ µ.

We rewrote the equation for the function F (r, t) in terms of the variables s and η:

i
∂F

∂t
+

1

2hshη

[
∂

∂s

(
hη
hs

∂F

∂s

)
+

∂

∂η

(
hs
hη

∂F

∂η

)]
+ |G|2

(
1− |F |2

)
F =

= − 1

G

[
1

h2s

∂G

∂s

∂F

∂s
+

1

h2η

∂G

∂η

∂F

∂η

]
.
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We used the assumption that the characteristic variation scale ΛG of the function
G(r) significantly exceeds the sizes Λqs of the localization region of the quasisoliton.
Expanding the function |G(r)|2 near the curve r0(s) into a Taylor series of η, namely,

|G(r)|2 = |G(r0 + ηn0)|2 ≈ |G(r0)|2 +

[
∂ |G|2

∂η

]∣∣∣∣∣
η=0

η + . . . .

For the localized quasisoliton formation moving along the trajectory r0(s), it is
convenient to pass from the arc length s to the coordinate ξ “accompanying” the
quasisoliton:

ξ = s− sqs(t), sqs(t)=

t∫
0

v(t) dt,

where sqs(t) is the position of the center of a quasisoliton on the curve r0(s),
v(t) is the velocity of a 2D dark quasisoliton.

After such a transition, the solution of the equation for the function F (r, t) near
the curve r0(s) can be represented as an asymptotic series of µ:

F (ξ, η, t) = µ0F0(ξ, η, v(µt)) + µ1F1(ξ, η, µt) + µ2F2(ξ, η, µt) + . . . .

µ0: −iv ∂F0

∂ξ
+

1

2

∂2F0

∂ξ2
+

1

2

∂2F0

∂η2
+ g2(ss, 0)

(
1− |F0|2

)
F0 = 0.

ξ̄ = g(ss, 0) ξ, η̄ = g(ss, 0) η, v̄ = v
/
g(ss, 0). ⇒ F0(ξ, η, v)≡Ψs

(
ξ̄, η̄, v̄

)
.
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(sqs, 0) is the position of the center of the 2D dark quasisoliton, which is determined
in the coordinate system (s, η).
g2(sqs, 0) is the density of the undisturbed inhomogeneous BEC at the point (sqs, 0).

µ1: −iv̄ ∂F1

∂ξ̄
+

1

2

∂2F1

∂ξ̄2
+

1

2

∂2F1

∂η̄2
+ g2(ss, 0)

((
1−2 |F0|2

)
F1−F 2

0 F
∗
1

)
=R.

R=−

ξ[∂g2
∂s

]∣∣∣∣∣s=sqs
η=0

+ η

[
∂g2

∂η

]∣∣∣∣∣s=sqs
η=0

(1−|F0|2
)
F0−

i

2

dv2

dsqs

∂F0

∂v
−κη ∂

2F0

∂ξ2
−

−
(
ivξ+1

)[
∂ ln g

∂s

]∣∣∣∣∣s=sqs
η=0

∂F0

∂ξ
−

ivη[∂ ln g

∂s

]∣∣∣∣∣s=sqs
η=0

+

[
∂ ln g

∂η

]∣∣∣∣∣s=sqs
η=0

− κ

2

∂F0

∂η
.

The conditions for the existence of localized (both in ξ and η) solutions in the
equation for the function F1 are the fulfillment of the following equalities:

Re

 +∞∫
−∞

dη

+∞∫
−∞

dξR ∂F ∗0
∂ζ1(2)

= 0, ζ1 ≡ ξ, ζ2 ≡ η.

These relations for the complex equation for the function F1 essentially counterparts
of the Fredholm theorem on alternative.
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Using the symmetry of considered localized structures, namely,
Ψs

(
ξ̄, η̄, v̄

)
=Ψs

(
ξ̄,−η̄, v̄

)
, and the integral relations for 2Ddark solitons,

as a result, we arrived at the following equations:

d ln Ē
dsqs

= −2

[
∂ ln g

∂s

]∣∣∣∣∣s=sqs
η=0

, κ =

[
∂ ln g

∂η

]∣∣∣∣∣s=sqs
η=0

(
1− 2Ē

v̄P̄

)
.

The quantities P̄= P̄(v̄(t)) and Ē= Ē(v̄(t)) at each moment of time t are
the corresponding characteristics of a 2D dark soliton propagating with
the velocity v̄(t) for a given value of v̄ in a homogeneous condensate of
unit density.

Hereafter we call P̄(v̄(t)) and Ē(v̄(t)) the normalized momentum and
the normalized energy of a 2D dark quasisoliton, respectively.
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IV. Geometric optics of 2D dark quasisoli-
tons in a smoothly inhomogeneous BEC

1. Dependence of the normalized energy of a 2D dark quasi-
soliton on its position along the propagation path

Ē(ss) =
Ē(0) g2(0, 0)

g2(ss, 0)
.

Here, Ē(0) are the initial values of the normalized energy,

g2(0, 0) is the density of the undisturbed inhomo-
geneous condensate at the point (sqs(t=0)=0, 0),
from which the 2D dark quasisoliton starts.

The normalized momentum P̄ and the normalized velocity v̄ are single-valued func-
tions of the normalized energy Ē ; hence, both P̄ and v̄ are functions of only g(sqs, 0).

P̄= P̄
(
Ē
)
,

v̄= v̄
(
Ē
)
.

⇒
P̄= P̄

(
g(ss, 0)

)
,

v̄= v̄
(
g(ss, 0)

)
.

It follows that an increase (decrease) in the density ng(sqs, 0) = g2(sqs, 0) of the
undisturbed condensate along the propagation path leads to a consistent decrease
(increase) in Ē(sqs) and P̄(sqs) and an increase (decrease) in v̄(sqs).

As a result, the vortex pair as it penetrates into the more dense condensate may
become a vortex-free soliton, and vice versa the vortex-free soliton as it reaches the
less dense Bose gas may convert into a vortex pair.
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2. Equation of the 2D dark quasisoliton trajectory

The expression for the curvature κ uniquely specify on the plane (x, y) the trajectory
r0(s), along which the quasisoliton moves:

dr0
ds

= s0(s),
ds0
ds

=κ(s)n0(s), κ(s)=

[(
1−

2Ē
(
g
)

v̄
(
g
)
P̄
(
g
))∂ ln g

∂η

]∣∣∣∣∣
η=0

.

Нere s0(s) and n0(s) are the unit vectors of the tangent and the normal to the
curve r0(s), respectively.

By analogy with geometrical optics, we introduced, instead of the arc length s, a
new variable τ :

dτ =
ds

ν
(
g(s, 0)

) , ν
(
g(s, η)

)
=
g(s, η) P̄

(
g(s, η)

)
Ē (0) g2(0, 0)

,

where the function ν
(
g(s, η)

)
has the meaning of an “effective refractive index” for

2D dark quasisolitons in an inhomogeneous BEC.

Then the equation of the quasisoliton trajectory takes the form typical of
geometrical optics:

dr0
dτ

= ν
(
g(s, 0)

)
s0 =p,

dp

dτ
=

1

2
∇
(
ν2
)∣∣∣
η=0

.
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3. Method of calculation the trajectories of 2D dark quasi-
solitons in a smoothly inhomogeneous BEC

First of all, we seek the density distribution of the BEC formed
under the action of the external potential Vext(r) in the Thomas-
Fermi approximation:

ng
TF

(r) = g2
TF

(r) =
(
1− Vext(r)

)
> 0.

Then, using our analytical approximation for the dependence
P̄
(
Ē
)
, we determine the effective refractive index:

ν(r) ≈ νTF(r)=
√
ng

TF
(r)

αTF (r)

Ē0 n0,g
TF

sinh

(
Ē0 n0,g

TF

αTF (r)ng
TF

(r)

)
,

αTF (r) = 2π +
2π

3
exp

−( Ē0 n0,g
TF

9.8ng
TF

(r)

)2
.

Here, Ē0 and n0,g
TF

are the normalized energy of the 2D dark quasi-
soliton and the density of the undisturbed inhomogeneous BEC at
the point r=r0(0) from which the quasisoliton starts.
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Finally, we solve the geometrical-optics equation

d2r0

dτ2
=

1

2
∇
(
ν2
TF

)∣∣∣
r=r0

with the “initial conditions”

r0(τ=0) = r0(t=0),
dr0(τ)

dτ

∣∣∣∣∣
τ=0

=

[
νTF(r0(t))

ṙ0(t)

|ṙ0(t)|

]∣∣∣∣∣
t=0

.

Here, r0(t=0) and ṙ0(t=0) are the position and velocity of a quasi-
soliton at the time t=0 when we started to follow its motion.

Thus, we determine the trajectory r0(τ), along which a 2D dark
quasisoliton moves with the energy

E(sqs) = g2(sqs, 0) Ē(sqs) = g2(0, 0) Ē(0),

and the velocity

v(r0) =
√
ng

TF
(r0) v̄

(
Ē(r0)

)
.
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V. Numerical simulation of the dynamics
of 2D dark quasisolitons in a smoothly
inhomogeneous BEC

The comparisons of the results of numerical simulation of the dynamics
of 2D dark quasisolitons directly within GP equation with the results
obtained by using the developed asymptotic theory confirmed the validity
of the proposed method of describing the behavior of quasisolitons in
a smoothly inhomogeneous BEC.
It was analysed in more detail

1 the trajectories, along which 2D dark quasisolitons move,
2 and the structural changes in the 2D dark quasisolitons moving

along the corresponding propagation paths.

In our numerical calculations the wave function Ψ(r, t) was specified at
the initial time t=0 in the form of the product

Ψ(r, t=0) = g(r)F0(ξ, η, v0) .

Here, we calculated the purely real function g(r) without the Thomas-
Fermi approximation, but using the numerical solution of stationary
equation. The wave function F0(ξ, η, v0) ≡ Ψs

(
ξ̄, η̄, v̄

(
Ē0

))
was also

found by numerical solution of stationary problem.
,
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Sample 1.

Vext(r) =
ω2
xx

2

2
+
ω2
yy

2

2
, ωx = 0.0135, ωy = 0.027.

x0 = −44.82, y0 = −14.94, n0,g
TF

= 0.734.

Ē0 = 10.48, v̄ = 0.4.
,
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Sample 2.

Vext(r) =
ω2
xx

2

2
+
ω2
yy

2

2
, ωx = 0.014, ωy = 0.028.

x0 = −43.06, y0 = −7.18, n0,g
TF

= 0.795.

Ē0 = 8.68, v̄ = 0.525.
,
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A

B

Variations in the normalized energy Ē of a 2D dark quasisoliton along its propagation
path r0(τ) in cases corresponding to the diagram A in the sample 1 and to the
diagram B in the sample 2. The dashed line shows the critical values Ē= Ē∗≈7.59
of the normalized energy, at which the normalized velocity v̄ of a 2D dark soliton is
equal to v̄∗≈0.61 and the soliton state undergoes a bifurcation (the vortex 2D dark
soliton converts into a vortex-free one). The unshared squares and circles show the
results obtained by numerical simulation performed directly within the framework
of GP equation.
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Sample 3.

Vext(r) = V0 exp
(
−
(
x2 + y2

)/
Λ2
G

)
, V0 = 0.145, ΛG = 12.8.

x0 = −38.4, y0 = 12.8, n0,g
TF
≈ 1. Ē0 = 8.93, v̄ = 0.5.

By artificially creating inhomogeneities in the BEC, using, e.g., focused laser beams,
it is possible to control the behavior of 2D dark quasisolitons.
Our approach makes it possible to effectively select parameters of the laser beams.
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VI. Conclusions

1 We have found the analytical approximation for the dependence
of the momentum of 2D dark solitons on their energy.

2 We established that the trajectories of 2D dark quasisolitons in
a smoothly inhomogeneous BEC are described by a system of
ordinary differential equations, which we reduced to a form typical
of geometrical optics of isotropic media. To this end, we introduced
the concept of an effective refractive index dependent on both the
density distribution of the undisturbed inhomogeneous condensate
and the energy of the quasisoliton propagating in it.

3 We have found the law of variation in the normalized energy of 2D
dark quasisolitons along their propagation paths. Using this law,
one can describe the structural transformations of the quasisoliton
formations moving in a smoothly inhomogeneous BEC.

4 We compared the results obtained by numerical simulation directly
within the framework of the GP equation and the results of the
analysis based on the constructed asymptotic description. This
comparison shows good agreement between direct numerical calcu-
lations and the developed theory, which confirms its validity.

,
Dynamics of two-dimensional dark quasisolitons in a smoothly inhomogeneous Bose-Einstein condensate, 28/28


	Basic equation of the BEC dynamics.
	2D dark solitons in a homogeneous BEC.
	Asymptotic description of the dynamics of 2D dark quasisolitons in a smoothly inhomogeneous BEC.
	Geometric optics of 2D dark quasisolitons.
	Numerical simulation of the dynamics of 2D dark quasisolitons in a smoothly inhomogeneous BEC.
	Conclusions.

	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	0.25: 
	0.26: 
	0.27: 
	0.28: 
	0.29: 
	0.30: 
	0.31: 
	0.32: 
	anm0: 
	0.EndLeft: 
	0.StepLeft: 
	0.PlayPauseLeft: 
	0.PlayPauseRight: 
	0.StepRight: 
	0.EndRight: 
	0.Minus: 
	0.Reset: 
	0.Plus: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	1.13: 
	1.14: 
	1.15: 
	1.16: 
	1.17: 
	1.18: 
	1.19: 
	1.20: 
	1.21: 
	1.22: 
	1.23: 
	1.24: 
	1.25: 
	1.26: 
	1.27: 
	1.28: 
	1.29: 
	1.30: 
	1.31: 
	1.32: 
	anm1: 
	1.EndLeft: 
	1.StepLeft: 
	1.PlayPauseLeft: 
	1.PlayPauseRight: 
	1.StepRight: 
	1.EndRight: 
	1.Minus: 
	1.Reset: 
	1.Plus: 
	2.0: 
	2.1: 
	2.2: 
	2.3: 
	2.4: 
	2.5: 
	2.6: 
	2.7: 
	2.8: 
	2.9: 
	2.10: 
	2.11: 
	2.12: 
	2.13: 
	2.14: 
	2.15: 
	2.16: 
	2.17: 
	2.18: 
	2.19: 
	2.20: 
	2.21: 
	2.22: 
	2.23: 
	2.24: 
	2.25: 
	2.26: 
	2.27: 
	2.28: 
	2.29: 
	2.30: 
	2.31: 
	2.32: 
	anm2: 
	2.EndLeft: 
	2.StepLeft: 
	2.PlayPauseLeft: 
	2.PlayPauseRight: 
	2.StepRight: 
	2.EndRight: 
	2.Minus: 
	2.Reset: 
	2.Plus: 


