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Problem statement

Problem Statement

This report is devoted to the classi�cation problem of nonlinear hyperbolic
equations uxy = f(u, ux, uy). (1)

The existence of higher symmetries is the hallmark of integrability of the
equation. Zhiber and Shabat [1] obtained a complete list of nonlinear
hyperbolic equations of the form

vxy = F (v) (2)

� the Klein-Gordon equations with higher symmetries.

The purpose of this paper is to describe all nonlinear hyperbolic equations
of the form (1) reduced to Eq. (2) by di�erential substitutions

v = ϕ(u, ux, uy). (3)

Note that we described the pairs of Eqs. (1), whose linearizations were
related by Laplace transformations of the �rst and the second order.
In this case we obtained di�erential substitutions which connected such
nonlinear equations.
[1] Zhiber A. V., Shabat A. B., Soviet Physics Doklady 24 (1979), 607�609
[2] Kuznetsova M. N., U�msk. Mat. Zh. 1:3 (2009), 87�96 (in Russian)
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Di�erential substitutions of the form v = ϕ(u, ux)

Theorem 1. Suppose that Eq. (1) is reduced to Eq. (2) by di�erential

substitution

v = ϕ(u, ux). (4)

Then Eqs. (1), (2) and substitution (4) take one of the following form:

uxy = uF ′
(
F−1(ux)

)
, vxy = F (v), v = F−1(ux); (5)

uxy =

√
2uy

s′(ux)
, vxy = F (v), v = s(ux), s′(ux)F

(
s(ux)

)
= 1; (6)

uxy = ux
(
ψ(u, uy)− uyα′(u)

)
, vxy = exp v, v = α(u) + lnux,

ψu + ψψuy − α′uyψuy = expα; (7)

uxy = ux
(
ψ(u, uy)− uyα′(u)

)
, vxy = 0, v = α(u) + lnux,

ψu + ψψuy − α′uyψuy = 0; (8)

uxy =
c− uyϕu(u, ux)

ϕux(u, ux)
, vxy = 0, v = ϕ(u, ux); (9)
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Di�erential substitutions of the form v = ϕ(u, ux)

uxy = sinu
√

1− u2x, vxy = sin v, v = u+ arcsinux; (10)

uxy = expu
√

1 + u2x, vxy = exp v, v = u+ ln
(
ux +

√
1 + u2x

)
; (11)

uxy = u, vxy = v, v = cu+ ux; (12)

uxy = δ(uy), vxy = 1, v = cu+ ux, δ(c+ δ′) = 1 (13)

up to point transformations u → θ(u), v → κ(v), x → αx, y → βy,
where α, β are arbitrary constants. Here c is an arbitrary constant; in

case (7) ψ, α satisfy the condition ψ 6= u+ uyα
′.

Now let us look at some of the obtained equations. The equation
uxy = sinu

√
1− u2x has symmetries of the third order [3]. Integrals and

general solution of uxy = expu
√

1 + u2x are contained in [3].
[3] Meshkov A.G., Sokolov V.V. Theor. Math. Phys. 166:1 (2011), 43�57
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Di�erential substitutions of the form v = ϕ(u, ux)

Case (5)

If F (v) = exp v, then we obtain
uxy = uux. (14)

Eq. (14) is reduced to the Liouville equation vxy = exp v by di�erential
substitution

v = lnux. (15)

Symmetries of the third order, integrals and general solution of Eq. (14)
are presented in [3].

If F (v) = sin v, then we obtain

uxy = u
√

1− u2x. (16)

Eq. (16) is reduced to the sin-Gordon equation vxy = sin v by
di�erential substitution

v = arcsinux. (17)

Eq. (16) has symmetries of the third order [3].

[3] Meshkov A.G., Sokolov V.V. Theor. Math. Phys. 166:1 (2011), 43�57
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Di�erential substitutions of the form v = ϕ(u, ux)

In case F (v) = exp v + exp(−2v) we have

uxy = 3ub(ux). (18)

Here b is determined by

(2ux + b)2(ux − b) = 1. (19)

Di�erential substitution

v = −1

2
ln
(
ux − b(ux)

)
(20)

reduces Eq. (18) to the Tzitzeica equation vxy = exp v + exp(−2v) and
is known (see. [4]).

[4] Zhiber A. V., Sokolov V. V. Russian Mathematical Surveys 56(1):61
(2001), 61�101
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Di�erential substitutions of the form v = ϕ(u, ux)

Case (6)

If F (v) = v, then we obtain the Goursat equation

uxy = 2
√
uxuy. (21)

Eq. (21) is reduced to the equation

vxy = v (22)

by di�erential substitution

v =
√

2ux. (23)

Eq. (21) has symmetries of the third order [3].

If F (v) = sin v we get S�integrable equation (see [3])

uxy =
√

2uy
√

1− u2x. (24)

Eq. (24) is reduced to the sin-Gordon equation by di�erential
substitution

v = arccos(−ux). (25)

[3] Meshkov A.G., Sokolov V.V. Theor. Math. Phys. 166:1 (2011), 43�57
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Di�erential substitutions of the form v = ϕ(u, ux)

If F (v) = exp v, then we get

uxy = ux
√

2uy. (26)

Eq. (26) is reduced to the Liouville equation by substitution

v = lnux. (27)

Symmetries of the third order, integrals and general solution of Eq. (26)
are presented in [3].

Of interest is the equation obtained in the case
F (v) = exp v + exp(−2v):

uxy =
√

2uya(ux). (28)

Here a is determined by

2(a+ 2ux)2(a− ux) = 27. (29)

Di�erential substitution

v = −1

2
ln

(
2a(ux)− 2ux

3

)
(30)

reduces Eq. (28) to the Tzitzeica equation. We can hope that Eq. (28)
has simmetries of the �fth order.

[3] Meshkov A.G., Sokolov V.V. Theor. Math. Phys. 166:1 (2011), 43�57
Kuznetsova M.N., Zhiber A.V. (Ufa) 8 / 23



Di�erential substitutions of the form v = ϕ(u, ux)

Case (9). Equation

uxy =
c− uyϕu(u, ux)

ϕux(u, ux)
(31)

in case c = 0 has x-integral W = ϕ(u, ux), in case c 6= 0 has x-integral
W = ϕuxuxx + ϕuux.

Case (7). Equation

uxy = ux
(
c1 exp(−u) + c2 exp(u)

)
. (32)

is reduced to the Liouville equation vxy = 2c2 exp v by substitution

v = u+ lnux (33)

Symmetries, integrals, and the general solution of Eq. (32) are
presented in [3].

In case α(u) = u we obtain

uxy = ux
exp(u)− ψu(u, uy)

ψuy(u, uy)
(34)

with y-integral W̄ = ψ(u, uy)− expu.

[3] Meshkov A.G., Sokolov V.V. Theor. Math. Phys. 166:1 (2011), 43�57
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Di�erential substitutions of the form v = ϕ(u, ux)

In general case Eq. (7)

uxy = ux
(
ψ(u, uy)− uyα′(u)

)
, where ψu + ψψuy − α′uyψuy = expα

(35)
has integrals

W̄ = ψuyuyy + ψuuy −
ψ2

2
, (36)

W =
uxxx
ux
− 3

2

u2xx
u2x

+

(
α′′(u)− α′2(u)

2

)
u2x (37)

Case (8). Equation

uxy = ux
(
ψ(u, uy)− uyα′(u)

)
, where ψu + ψψuy − α′uyψuy = 0 (38)

has integrals

W =
uxx
ux

+ α′(u)ux, W̄ = ψ(u, uy). (39)

All the above equations with integrals are contained in a list of Liouville
type equations given in [4].
[4] Zhiber A. V., Sokolov V. V. Russian Mathematical Surveys 56(1):61
(2001), 61�101
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Di�erential substitutions of the form v = ϕ(u, ux)

Theorem 2. Suppose that the Klein-Gordon equation

vxy = F (v) (40)

is reduced to uxy = f(u, ux, uy) (41)

by di�erential substitution
u = ψ(v, vy) (42)

Then Eqs. (40), (41) and substitution (42) take one of the following form:

vxy = F (v), uxy = F ′
(
F−1(ux)

)
u, u = vy; (43)

vxy = 1, uxy =
ψ′′
(
ψ−1(u)

)
uy

ψ′
(
ψ−1(u)

) , u = ψ(vy); (44)

vxy = 0, uxy = 0, u = cv + µ(vy); (45)

vxy = 0, uxy = −ux expu, u = ln vy − ln v; (46)

vxy = v, uxy = u, u = cv + vy; (47)

vxy = 1, uxy = 1, u = v + vy (48)
up to point transformations v → κ(v), u→ θ(u), x→ αx, y → βy, where
α and β � are arbitrary constants. Here c � is an arbitrary constant.
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Di�erential substitutions of the form v = ϕ(u, ux)

Based on the above lists, the B�acklund transformations have been
constructed for some pairs of equations. Namely, equations

uxy = −ux expu, vxy = 0 (49)

are connected by the B�acklund transformation

v = lnux − u, u = ln vy − ln v. (50)

Equations
uxy = F ′

(
F−1(ux)

)
u, vxy = F (v) (51)

are related by the B�acklund transformation

v = F−1(ux), u = vy. (52)

We showed (see [2]) that linearizations of Eqs. (51) were related by the
Laplace transformation of the �rst order.

[2] Kuznetsova M. N. U�msk. Mat. Zh. 1:3 (2009), 87�96 (in Russian)
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Substitutions of the form v = ϕ(u, ux, uy)

The purpose of this section is the classi�cation of nonlinear hyperbolic
equations

uxy = f(u, ux, uy), (53)

reduced to the Klein-Gordon equation

vxy = F (v) (54)

by di�erential substitution of the form

v = ϕ(u, ux, uy), ϕux · ϕuy 6= 0. (55)

Theorem 3. Suppose that Eq. (53) is reduced to Eq. (54) by di�erential

substitution (55) . Then Eqs. (53), (54) and substitution (55) take one

of the following form:

uxy =
√
u2x + a

√
u2y + b, vxy =

1

2

(
exp v − ab exp(−v)

)
,

v = ln
(
ux +

√
u2x + a

)(
uy +

√
u2y + b

)
; (56)

uxy =
√
uxuy, vxy = v/4, v =

√
ux +

√
uy; (57)

uxy =
√
ux, vxy = 1/2, v =

√
ux + uy; (58)

uxy = 1, vxy = 0, v = ux + uy; (59)
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Substitutions of the form v = ϕ(u, ux, uy)

uxy =
1

γ′(uy)
, vxy = 1, v = ux + γ(uy) + u, 1− γ′′

γ′2
= γ′; (60)

uxy = µ(u)uxuy, vxy = 0, v = c1 lnux + c2 lnuy + α(u),

µ′(c1 + c2) + µ2(c1 + c2) + α′′ + α′µ = 0; (61)

uxy = µ(u)uxuy, vxy = exp v, v = ln(uxuy) + α(u),

2µ′ + 2µ2 + α′′ + α′µ = expα; (62)

uxy = u, vxy = v, v = c1uy + c2ux + c3u; (63)

uxy = µ(u)(uy + c)ux, vxy = exp v, v = ln(uy + c) + lnux + α(u),

2µ′ + 2µ2 + α′′ + α′µ = expα, 2µ2 + µ′ + α′µ = expα; (64)

uxy = µ(u)(uy + c)ux, vxy = 0, v = c2 ln(uy + c) + c1 lnux + α(u),

(µ′ + µ2)(c1 + c2) + α′′ + α′µ = 0, c1µ
′ + µ2(c1 + c2) + α′µ = 0; (65)

uxy = µ(u)ux, vxy = 0, v = uy − lnux + α(u),

α′′ + µ′ = 0, µ2 − µ′ + α′µ = 0; (66)

uxy =
µ(u)ux
γ′(uy)

, vxy = 0, v = lnux + γ(uy) + α(u), (67)

c3 +
γ′′

γ′2
+ c4γ

′uy = 0, α′′ + µ′ + c4µ
2 = 0, c3µ

2 + µ′ + µ2 + α′µ = 0;
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Substitutions of the form v = ϕ(u, ux, uy)

uxy = 0, vxy = 0, v = β(ux) + γ(uy) + c3u; (68)

uxy =
ux

(au+ b)γ′(uy)
, vxy = exp v, v = lnux + γ(uy)− 2 ln(au+ b),

c3 +
γ′′

γ′2
+ c4γ

′uy = −γ′ exp γ, c3 + 1− 3a = 0, c4 + 2a2 − a = 0; (69)

uxy = − 1

uβ′(ux)γ′(uy)
, vxy = 0, v = β(ux) + γ(uy),

β′′

β′2 = uxβ
′ + c1,

γ′′

γ′2
= uyγ

′ − c1; (70)

uxy =
µ(u)

β′(ux)γ′(uy)
, vxy = exp v, v = β(ux) + γ(uy) + α(u),

ux +
1

β′(ux)
= exp(β), uy +

1

γ′(uy)
= exp γ, α′′ = expα, µ = (expα)/α′; (71)

uxy =
µ(u)

β′(ux)γ′(uy)
, vxy = exp v, v = β(ux) + γ(uy) + α(u),

2ux +
1

β′(ux)
= expβ, 2uy +

1

γ′(uy)
= exp γ,

α′µ− 2µ2 = expα, α′2 = 8 expα; (72)
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Substitutions of the form v = ϕ(u, ux, uy)

uxy = s(u)
√

1− u2x
√

1− u2y, vxy = c sin v,

v = arcsinux + arcsinuy + p(u),

s′′ − 2s3 + λs = 0, p′2 = 2s′ − 2s2 + λ; (73)

uxy = s(u)b(ux)b̄(uy), vxy = c1 exp v + c2 exp(−2v),

v = −1

2
ln(ux − b)−

1

2
ln(uy − b̄) + p(u),

(ux − b)(b+ 2ux)2 = 1, (uy − b̄)(b̄+ 2uy)2 = 1,

s′′ − 2ss′ − 4s3 = 0, p′2 − 2sp′ − 3s′ − 2s2 = 0 (74)

up to point transformations u → θ(u), v → κ(v), x → αx, y → βy
and change of the form u + αx + βy → u, where α, β � are arbitrary

constants. Here a, b, c, c1, c2, c3, c4 are arbitrary constants such that

a2 + b2 6= 0, c · c1 · c2 6= 0; in cases (67), (69) the function γ satis�es the

condition
(
γ′′/γ′2

)′ 6= 0; in cases (70)�(72) the functions β and γ sutisfy

the conditions
(
β′′/β′2

)′ 6= 0 and
(
γ′′/γ′2

)′ 6= 0 accordingly, and µ′ 6= 0;
everywhere µ 6= 0.
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Substitutions of the form v = ϕ(u, ux, uy)

Consider equation

uxy =
√
u2x + a

√
u2y + b. (75)

If a · b 6= 0, then, after transformations
√
ax→ x,

√
by → y,

v − ln(ab)1/2 → v, we obtain

uxy =
√
u2x + 1

√
u2y + 1. (76)

Eq. (76) reduced to the sin-Gordon equation

vxy =
1

2

(
exp v + exp(−v)

)
(77)

by di�erential substitution

v = ln
(
ux +

√
u2x + 1

)(
uy +

√
u2y + 1

)
. (78)

Note that Eqs. (76)�(78) is reduced to

uxy =
√

1− u2x
√

1− u2y, v = arcsinux + arcsinuy, vxy = − sin v (79)

by point transformations and transformations of independent variables.
Eq. (76) is S-integrable and have symmetries of the third order (see,
[3]).
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Substitutions of the form v = ϕ(u, ux, uy)

If a = 0 then transformations v− ln 2→ v,
√
by → y, v− ln

√
b→ v give

uxy = ux

√
u2y + 1. (80)

Eq. (80) is reduced to the Liouville equation

vxy = exp v (81)

by di�erential substitution

v = lnux + ln
(
uy +

√
u2y + 1

)
. (82)

Eqs. (80)�(82) are reduced to

uxy = ux

√
1− u2y, v = −i arcsinuy + lnux, vxy = −i exp v (83)

by point transformations and transformations of independent variables.
Symmetries of the third order, x and y-integrals, and general solution
of Eq. (80) are contained in [3].
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Substitutions of the form v = ϕ(u, ux, uy)

Equation

uxy =
√
ux (84)

has symmetries of the third order [3]. The integrals of this equation are
given by the formulas

ω =
uxx√
ux
, ω̄ = uyyy. (85)

Equation
uxy = µ(u)uxuy (86)

has integrals ω = lnux − σ(u), ω̄ = lnuy − σ(u). Here σ′ = µ.

Equation
uxy = µ(u)(uy + c)ux (87)

in case (64) has the y-integral of the �rst order

ω̄ = ln(uy + c)− σ(u), (88)

where σ′ = µ, c 6= 0. At the same time the x-integral has the form

ω =
uxxx
ux
− 3

2

u2xx
u2x
− 1

2

(
µ2(u) + 2µ(u)α′(u) + α′2(u)

)
u2x. (89)

In case (14) the x-integral has the form ω = c2µ(u)ux + c1
uxx
ux

+α′(u)ux.
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Substitutions of the form v = ϕ(u, ux, uy)

Equation
uxy =

ux
(au+ b)γ′(uy)

(90)

has the y-integral of the �rst order

ω̄ = γ(uy)− 1

a
ln(au+ b) (91)

and the x-integral of the third order

ω =
uxxx
ux
− 3

2

u2xx
u2x

+
u2x(2a− 1)

2(au+ b)2
. (92)

The equation
uxy =

µ(u)

β′(ux)γ′(uy)
(93)

under conditions (71) is reduced to equation from the list of paper [4]
by point transformation. Eq. (93) has the integrals of the second order

ω = β′(ux)uxx −
µ′(u)

µ(u)β′(ux)
, ω̄ = γ′(uy)uyy −

µ′(u)

µ(u)γ′(uy)
. (94)

Kuznetsova M.N., Zhiber A.V. (Ufa) 20 / 23



Substitutions of the form v = ϕ(u, ux, uy)

Eq. (93) under conditions (72) is reduced to equation presented in [4]

uxy =
1

u
B(ux)B̄(uy) (95)

by point transformation. Here BB′ +B − 2ux = 0, B̄B̄′ + B̄ − 2uy = 0.
There are integrals of Eq. (95) in the above paper

ω =
uxxx
B

+
2(B − ux)

B3
u2xx +

2(2ux +B)

uB
+
B(ux +B)

u2
,

ω̄ =
uyyy
B̄

+
2(B̄ − uy)

B̄3
u2yy +

2(2uy + B̄)

uB̄
+
B̄(uy + B̄)

u2
.

All of the above equations with integrals are contained in a list of Liouville
type equations given in review [4].

[4] Zhiber A. V., Sokolov V. V. Russian Mathematical Surveys 56(1):61
(2001), 61�101
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Substitutions of the form v = ϕ(u, ux, uy)

Theorem 4. Suppose that the Klein-Gordon equation

vxy = F (v) (96)
is reduced to

uxy = f(u, ux, uy) (97)

by di�erential substitution of the form

u = ψ(v, vx, vy), ψvx · ψvy 6= 0 (98)

Then Eqs. (96), (97) and substitution (98) take one of the following form:
vxy = v, uxy = u, u = c1ux + c2uy + c3u; (99)

vxy = 0, uxy = 0, u = β(vx) + γ(vy) + c3v; (100)

vxy = 0, uxy = exp(u)uy, p
′ = exp(cv), u = ln

(
− p′(v)vx
µ(vy) + p(v)

)
; (101)

vxy = 1, uxy = c1(ux − c2), u = exp(c1vx) + c2vy; (102)

vxy = exp v, uxy = uux, u = vy + µ(vx) exp v, 2µ′ = µ2; (103)

vxy = 0, uxy = expu, u = ln vx + ln vy + δ(v), δ′′(v) = exp δ(v); (104)

vxy = 1, uxy = c1ux + c2uy − c1c2u, u = exp(c1vx) + exp(c2vy) (105)

up to point transformations u → θ(u), v → κ(v), x → αx, y → βy, where

α, β are arbitrary constants. Here c, c1, c2 are arbitrary constants such that

c1 · c2 6= 0.
Kuznetsova M.N., Zhiber A.V. (Ufa) 22 / 23



Substitutions of the form v = ϕ(u, ux, uy)
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