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Problem Statement

This report is devoted to the classification problem of nonlinear hyperbolic

equations Ugy = £ (u, ug, uy). (1)

The existence of higher symmetries is the hallmark of integrability of the
equation. Zhiber and Shabat [1] obtained a complete list of nonlinear
hyperbolic equations of the form

vy = F(v) (2)

— the Klein-Gordon equations with higher symmetries.

The purpose of this paper is to describe all nonlinear hyperbolic equations
of the form (1) reduced to Eq. (2) by differential substitutions

v = o(u, ug,uy). | (3)
Note that we described the pairs of Eqs. (1), whose linearizations were

related by Laplace transformations of the first and the second order.
In this case we obtained differential substitutions which connected such

nonlinear equations.
[1] Zhiber A. V., Shabat A. B., Soviet Physics Doklady 24 (1979), 607-609
[2] Kuznetsova M. N.,; Ufimsk. Mat. Zh. 1:3 (2009), 87-96 (in Russian)
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Differential substitutions of the form v = ¢(u, uzg)

Theorem 1. Suppose that Eq. (1) is reduced to Eq. (2) by differential
substitution

v =(u,uy). (4)

Then Eqs. (1), (2) and substitution (4) take one of the following form:
Upy = uF'(F_l(uz)), Uy = F(v), v= F_l(um); (5)

= V2 Ugy = F(v), v=s5(ug), §(uz)F(s(uz))=1; (6)

Upy = U (VY (U, uy) — uya/(u)), vgy =expv, v=a(u)+Inu,,

Yy + wwuy - O/Uywuy = exXp a; (7)
Ugy = U (V(u, uy) — uya/ (1)), vgy =0, v=a(u)+Inu,,
Yy + ¢¢uy - O/Uy%y = 0; (8)
¢ — Uy (U, Ug)
b S, 0 gt 0
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Differential substitutions of the form v = ¢(u, uzg)

10
11

Ugy = sinuy/1 — u2, Ugy = SINU, ¥ = U + arcsin Ug;
Ugy = expuy/1+u2, vgy =expv, v=u+1In (ux ++/1 +u925> ;

)
; (1)
Upy = U, Vgy =0V, U= CU+ Uyg; (12)
Ugy = O0(uy), Vo =1, v=cutu, dc+d)=1 (13)

(
(

up to point transformations v — 0(u), v = k(v), r — ax, y — Py,
where «, B are arbitrary constants. Here c is an arbitrary constant; in
case (7) ¥, a satisfy the condition 1 # u + uy o’

Now let us look at some of the obtained equations. The equation
Ugzy = sinuy/1 — w2 has symmetries of the third order [3]. Integrals and
general solution of ugy, = expu\/1+ u2 are contained in [3].
[3] Meshkov A.G., Sokolov V.V. Theor. Math. Phys. 166:1 (2011), 43-57
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Differential substitutions of the form v = ¢(u, uzg)

Case (5)

If F(v) = expv, then we obtain

Ugy = Ul (14)
Eq. (14) is reduced to the Liouville equation v, = expv by differential
substitution

v =Inu,. (15)
Symmetries of the third order, integrals and general solution of Eq. (14)
are presented in [3].

If F(v) = sinv, then we obtain

Ugy = /1 — u2. (16)
Eq. (16) is reduced to the sin-Gordon equation v, = sinv by
differential substitution
v = arcsin u,. (17)
Eq. (16) has symmetries of the third order [3].

v

[3] Meshkov A.G., Sokolov V.V. Theor. Math. Phys. 166:1 (2011), 43-57
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Differential substitutions of the form v = ¢(u, ug)

In case F'(v) = expv + exp(—2v) we have

Uzy = 3ub(uy). (18)

Here b is determined by
(2uy + )% (up — b) = 1. (19)

Differential substitution
v= —% In(uy — bluz)) (20)

reduces Eq. (18) to the Tzitzeica equation v,, = exp v + exp(—2v) and
is known (see. [4]).

[4] Zhiber A. V., Sokolov V. V. Russian Mathematical Surveys 56(1):61
(2001), 61-101
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Differential substitutions of the form v = ¢(u, ug)

Case (6)
If F(v) = v, then we obtain the Goursat equation
Uy = 27/MUally. (21)
Eq. (21) is reduced to the equation
Uy =V (22)
by differential substitution
v =\ 2Uy. (23)
Eq. (21) has symmetries of the third order [3]. )
If F(v) =sinv we get S—integrable equation (see [3])
Ugy = \/2uy\/1 — u2. (24)
Eq. (24) is reduced to the sin-Gordon equation by differential
substitution
v = arccos(—1ug). (25)J

[3] Meshkov A.G., Sokolov V.V. Theor. Math. Phys. 166:1 (2011), 43-57
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Differential substitutions of the form v = ¢(u, uzg)

If F(v) = expwv, then we get
Ugy = Ugr/2Uy. (26)
Eq. (26) is reduced to the Liouville equation by substitution
v = Inu,. (27)
Symmetries of the third order, integrals and general solution of Eq. (26)
are presented in [3].

Of interest is the equation obtained in the case
F(v) = expv + exp(—2v):

Uzy = /2uya(ug). (28)
Here a is determined by

2(a + 2ug)*(a — ug) = 27. (29)
Differential substitution
1 2a(ug) — 2uy
g a(ug) — 2u (30)

v = 111

2
reduces Eq. (28) to the Tzitzeica
has simmetries of the fifth order.

v

[3] Meshkov A.G., Sokolov V.V. Theor. Math. Phys. 166:1 (2011), 43-37
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Differential substitutions of the form v = ¢(u, ug)

Case (9). Equation
ey — ¢ — Uypu(u, uy)
Pu (U Ug)
in case ¢ = 0 has x-integral W = ¢(u, u,), in case ¢ # 0 has x-integral
W = PuyUgzz + Prylg-

(31)

Case (7). Equation

Ugy = Uy (1 exp(—u) + co exp(u)). (32)
is reduced to the Liouville equation v, = 2cz exp v by substitution
v=u+Inu, (33)

Symmetries, integrals, and the general solution of Eq. (32) are
presented in [3].

In case a(u) = u we obtain
~ ¢uy (Ua uy)
with y-integral W = ¢ (u, u,) — exp u.

Ugy = Ug

v

[3] Meshkov A.G., Sokolov V.V. Theor. Math. Phys. 166:1 (2011), 43-537
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Differential substitutions of the form v = ¢(u, ug)

In general case Eq. (7)

Uzy = Uz (Y(u, uy) — uyd/ (u)), where ¥y, + ihy, — a'uythy, = exp

. (35)
has integrals B 2
W = by, Uy + Yyuy — 5 (36)
Uzzx 3 ugzm " o’ (u) 2
W = w - 5@ + <OL (’LL) - 9 U, (37)

v

Case (8). Equation

Ugy = Uy (’l,ZJ(’LL, Uy) - uya/(u))a where 1, + w'@buy - O/Uy¢uy =0 (38)
has integrals
W= 4 o (w)ug, W = (u,uy). (39)

Ug

v

All the above equations with integrals are contained in a list of Liouville
type equations given in [4].
[4] Zhiber A. V., Sokolov V. V. Russian Mathematical Surveys 56(1):61

Kuznetsova M.N., Zhiber A.V. (Ufa) 10 / 23



Differential substitutions of the form v = ¢(u, uzg)

Theorem 2. Suppose that the Klein-Gordon equation

Ugy = F(v) (40)

15 reduced to ‘uzy = F(u, g, uy) ‘ (41)
by differential substitution

u = (v, vy) (42)

Then Eqs. (40), (41) and substitution (42) take one of the following form:

Upy = F(V), Ugy = F’(F_l(uw))u, U = Uy; (43)

_ T/J/I(lbfl(u))uy

Vzy = 1, Ugy = W’ U = ¢(Uy); (44)
Uzy = 0, Ugy = 0, u=cv+ H(Uy); (45)

VUgy =0, Ugpy = —uzexpu, u=Inv, —Inv; (46)
Ugy =V, Ugy = U, U= CUF Vy; (47)

Voy =1, Ugy =1, u=uv+u, (48)

up to point transformations v — k(v), u — 0(u), v — ax, y — By, where
a and B — are arbitrary constants. Here ¢ — is an arbitrary constant.
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Differential substitutions of the form v = ¢(u, uzg)

Based on the above lists, the Béacklund transformations have been
constructed for some pairs of equations. Namely, equations
Upy = —Ug €XPU, Vgy =0 (49)
are connected by the Bicklund transformation
v=Inu; —u, u=Inv,—Inv. (50)
Equations
Ugy = F'(F_l(uz))u, Ugy = F(v) (51)
are related by the Backlund transformation
v=F"ug), u=u, (52)
We showed (see [2]) that linearizations of Egs. (51) were related by the
Laplace transformation of the first order.

[2] Kuznetsova M. N. Ufimsk. Mat. Zh. 1:3 (2009), 87-96 (in Russian)
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Substitutions of the form v = @(u, ugz, uy)

The purpose of this section is the classification of nonlinear hyperbolic

equations

Ugy = f(u7 Uy uy)a ‘
reduced to the Klein-Gordon equation
Vgy = F(v)
by differential substitution of the form
v = @(uvuﬂcv uy)? Puz * Puy 7& 0.

(53)
(54)

(55)

Theorem 3. Suppose that Eq. (53) is reduced to Eq. (54) by differential
substitution (55) . Then Egs. (53), (54) and substitution (55) take one

of the following form: 1
Ugy = /U2 + ayJuZ +b, vy = i(expv — abexp(—v)),

v:ln(uw+ u%+a>(uy+1/u§+b>;
Ugy = \[Uglly, Vgy =0/4, U= tuz+ \/Uy;
Upy = Uz, VUzy =1/2, 0= /s + uy;

Upy =1, Uy =0, =1ty + uy;
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Substitutions of the form v = @(u, ugz, uy)

1 ,.)/l/
—, Upy =1, v=1uy+y(uy) +u, 1—W=7’; (60)

Uy = (W UUy, Vpy =0, v=rc1lnu, +colnuy + a(u),

W (e 4co) +p*(cr + )+’ +a'u=0; (61)

Uzy = p(U)UzUy, Vyy =expv, v =In(uzuy)+ a(u),
2 +2u% + o +a'p=expa; (62)
Upy = U, Ugy =0, U= Crly + Coly + CaU; (63)

Uzy = p(u)(Uy + €Uy, Vgy =expv, v=1In(uy+c) +Inu, + a(u),
2 +2u2 + o +a'p=expa, 2u®+p +a'p=-expo; (64)
Ugy = p(u)(Uy + Uz, Viy =0, v=coln(uy +¢) + c1 Inu, + o(u),
(W +u?)er+e)+a" +a'u=0, cp' +p*(er+e)+ap=0;  (65)
Uy = (W Uz, Vzy =0, v =1uy —Inu, + alu),
o +p/ =0, pP—p 4o p=0; (66)
_ p(w)ug
= )
1!

3+ % +eay'uy = 0,0" + p' + cap® = 0, c3p” 4+ 1 + p® + o' pp = 0

Vpy = O, v = lnux + ’}/(Uy) + a(u’)a (67)
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Substitutions of the form v = @(u, ugz, uy)

Ugy = 07 Vgy = 0, v = B(uz) + ’Y(uy) + c3u; (68)

Upy = ———————, Ugy =€xpv, v =Inu,+y(uy)—2In(au+0b),

3+ — +cay'uy = =7 expy,c3+1—3a=0,c4 +2a* —a =0; (69)
0

1
umy:_M7 Uzy = 0, v_ﬂ(ux)+7(uy),
" ,yl/
quzﬁl-f-ch qugﬂ/—cl; (70)
pi(u)
Upy = =, Ugy =€XPU, V= pPp(Ug)+ Y (Uy)+ x(u),
Y ﬂl(um)'}//(uy) Yy p 5( ) 7( y) ()
1 1 " /
z + = ex Uy + ———— =expy,a =expa, = (expa)/a’; (71
T p(8), uy o Py pa,p=(expa)/a’y (71)

HW__expu, o= Blug) + () + alu),

a'p—2u® =expa, o?=8expw; (72)
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Substitutions of the form v = @(u, ugz, uy)

Ugy = s(u)y/1 —u2y /1 —u, vy = csinv,

v = arcsinu, + arcsinuy + p(u),
" =283+ Xs =0, p?=25—252+\; (73)

Uzy = S(u)b(uz)b(uy), Vzy = c1expv + caexp(—2v),
1 1 -
V=5 In(u; — b) — B In(uy —b) + p(u),

(uz — D) (b+2up)? =1, (uy —b)(b+2u,)* =1,
s" —2ss’ —45 =0, p?—2sp' =35 —25°=0 (74)

up to point transformations v — 0(u), v — kK(v), * = azx, y — By
and change of the form u + ax + By — u, where o, 5 — are arbitrary
constants. Here a, b, ¢, c1, ca, c3, cq4 are arbitrary constants such that
a? +b%>#0, c-c1-ca #0; in cases (67), (69) the function ~y satisfies the
condition (’y”/’y’Q)/ # 0; in cases (70)—(72) the functions  and 7y sutisfy
the conditions (6”/5’2), # 0 and (7”/7’2)/ # 0 accordingly, and p' # 0;
everywhere pu # 0.
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Substitutions of the form v = @(u, ugz, uy)

Consider equation

Ugy = /U2 + ay/uZ +b. (75)

If a-b+# 0, then, after transformations y/ax — =, Vby =y,
v — In(ab)*/? — v, we obtain

Ugy = /U2 + 1y /u + 1. (76)

Eq. (76) reduced to the sin-Gordon equation

1
oy = 5 (expv + exp(—v)) (77)
by differential substitution
vzln(ux—i- u§+1) (uy+ u§+1). (78)

Note that Eqs. (76)—(78) is reduced to

Ugy = /1 —u2y/1— ufj,v = arcsin u, + arcsin uy, vyy = —sinv  (79)

by point transformations and transformations of independent variables.
Eq. (76) is S-integrable and have symmetries of the third order (see,

[31)-
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Substitutions of the form v = @(u, ugz, uy)

If a = 0 then transformations v —In2 — v, Vby — 3, v —Invb — v give
Ugy = Ugy/uZ + 1. (80)
Eq. (80) is reduced to the Liouville equation
Upy = €XPU (81)
by differential substitution

v:lnux+ln<uy+1/u§+1). (82)

Egs. (80)—(82) are reduced to

Upy = Uz /1 — ug, v = —tarcsinuy, +Inu,, vy =—iexpv (83)

by point transformations and transformations of independent variables.
Symmetries of the third order, x and y-integrals, and general solution
of Eq. (80) are contained in [3].
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Substitutions of the form v = @(u, ugz, uy)

Equation

Upy = Uz (84)
has symmetries of the third order [3]. The integrals of this equation are
given by the formulas

Uz _
w= , W=u 85
\/u_m Yyyy- ( )
Equation
Uy = )z, (36)
has integrals w = Inu, — o(u), @ = Inwu, — o(u). Here o' = p.
Equation
iy = () (1 + ) (57)
in case (64) has the y-integral of the first order
w = In(uy + ¢) — o(u), (88)

where ¢’ = p1, ¢ # 0. At the same time the z-integral has the form

Ugxa 3 uazcx 1 2 / 2 2
w== 5y~ (W) 2u(wa () +a <u>>ux- (89)

In case (14) the z-integral has the form w = cop(u)uy +c1 52 + o' (u)uy

19/23



Substitutions of the form v = @(u, ugz, uy)

Equation Uy
= — 90
= Gt by, o

has the y-integral of the first order
1
w = y(uy) — o In(au + b) (91)

and the x-integral of the third order
Upew  Sul, ui(2a—1)
S R Ry 92
“ Uy 2 u2 * 2(au +b)? (92)

V.

The equation

Ugy = —F———
xy B (uz)y (uy)

under conditions (71) is reduced to equation from the list of paper [4]

by point transformation. Eq. (93) has the integrals of the second order

M_ (94)

w = ' (tg)Uzy — m» W= VI(Uy)Uyy -
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Substitutions of the form v = @(u, ugz, uy)

Eq. (93) under conditions (72) is reduced to equation presented in [4]

Uy = Bua) Bluy) (95)

by point transformation. Here BB’ + B — 2u, = 0, BB’ + B — 2u,, = 0.
There are integrals of Eq. (95) in the above paper

_ Uszz 2(B —ug) o n 2(2u, + B) n B(ug + B)

YT B B3 ez uB u2 ’
gy | 2(B-wy) 5 2(2uy+ B) | B(uy + B)
g T "W up T

v

All of the above equations with integrals are contained in a list of Liouville
type equations given in review [4].

[4] Zhiber A. V., Sokolov V. V. Russian Mathematical Surveys 56(1):61
(2001), 61-101
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Substitutions of the form v = @(u, ugz, uy)

Theorem 4. Suppose that the Klein-Gordon equation

Uay = F(v) (96)

‘uxy = f(u, ug, uy) ‘ (97)
by differential substitution of the form
U=V, vz, vy), Yo, -y, #0 (98)
Then Eqs. (96), (97) and substitution (98) take one of the following form:

18 reduced to

Upy =V, Ugy = U, U= Cllz + Colly + C3U; (99)
Vgy = 07 Ugy = 07 U = ﬁ(vm) + '7('”7;) + c3v; (100)
P'(v)vs

Vgy = 0, Ugy = exp(u)uy,,p’ = exp(cv),u = In (—) : (101)

v v ! p(vy) +p(v)
Upy =1, Upy =c1(up —C2), u=exp(c1vz) + Ca0y; (102)
Vpy = XDV,  Upy = Ully, u =10y, + p(vy)expv, 24 = p% (103)
Vgy = 0, Ugy = expu,u = Inv, +Invy, + §(v),8" (v) = expd(v); (104)
Ugy = 1, Ugy = C1Ug + C2Uy — C1C2U, U = exp(C1V5) + exp(cavy) (105)

up to point transformations v — 0(u), v — k(v), * = azx, y — Py, where
«, B are arbitrary constants. Here c, c1, co are arbitrary constants such that
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Substitutions of the form v = @(u, ugz, uy)
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