

Uniform Polytime Computable Operators and Data Structures Akitoshi Kawamura, Operators and Data Structures For Real Analytic Functions Carsten Rösnick, Martin Ziegler

Theory and Practice

Unbounded Precision Computation

incl. asym. runtime

advertisement

• guaranteed behavior, closed under composition

2012 THE ALAN TURING YEAR

A Centenary Celebration of the Life and Work of Alan Turing

Computability and Complexity in Analysis (CCA)

Theory of (approximate) real computing with prescribable absolute output error 2⁻ⁿ.

Recursion Theory,
(qual.) Topology
"Weihrauch School"

e.g. "P versus $\mathcal{N}P$ ", quant. Topology
Stephen A. Cook's last two PhD students

Computable Real Functions

Real Function Complexity

GMP/MPFR

Function $f:[0,1] \rightarrow \mathbb{R}$ computable [in time t(n)]

if some TM can, on input of $n \in \mathbb{N}$ and of

 $(a_m)\subseteq \mathbb{Z} \text{ with } |x-a_m/2^{m+1}|<2^{-m}$ $(\equiv_p \rho_{sd}\text{-name})$

in time t(n) output $b \in \mathbb{Z}$ with $|f(x)-b/2^{n+1}| < 2^{-n}$.

Examples: a) +, \times , exp polytime on [0,1]!

- b) $f(x) \equiv \sum_{n \in L} 4^{-n}$ iff $L \subseteq \{0,1\}^*$ polytime-decidable
- c) sem (Heavioide ohottmenopotable xsc?

Observation i) If f computable \Rightarrow continuous.

ii) If f computable in time t(n), then

t(n+2) is a modulus of uniform continuity of f.

 $\mathbb{D}_n := \{ k/2^n : k \in \mathbb{Z} \}, \mathbb{D} = \bigcup_n \mathbb{D}_n \text{ dyadic rationals }$

Effects in Real Complexity

- Consider multivalued 'functions' With
- additional <u>discrete</u> data ('enrichment').

Example c1): exp not computable on entire \mathbb{R} , **c2)** Evaluation $(f,x) \rightarrow f(x)$ is not computable in time depending only on output precision n.

Example b): Given real symmetric $d \times d$ matrix A, find an eigenvector: incomputable; but computable when knowing Card $\sigma(A)$ [Z+B'04]

parameterized real complexity

Example a): Tests for in-/equality are undecidable

canonical C++x declaration/interface

Nonuniform Complexity of Operators

restricting

to $f \in \mathbb{C}^{\infty}$

but for

analytic f

polytime

 $f:[0,1] \rightarrow [0,1]$ polytime computable (\Rightarrow continuous)

• Max: f o Max(f): $x o max\{f(t): t \le x\}$ Kreinovich Max(f) computable in exponential time; polytime-computable iff $P = \mathcal{NP}$ even when

- $\int: f \to \int f: x \to \int_0^x f(t) dt$ Uniform $\int f$ computable in exponential time;

 polytime-computable iff $\mathcal{P}=\#\mathcal{P}$
- dsolve: $C[0,1] \times [-1,1] \ni f \to z$: $\dot{z}(t) = f(t,z)$, z(0) = 0. in general no computable z for $f \in \mathbb{C}^1$ polytime-computable iff P = PSPACE for $f \in \mathbb{C}^k$ between $C\mathcal{H}$ and PSPACE

Representing Power Series

incomputable [ZhWe'01]

• radius of convergence $R=1/\limsup_{i}|c_{i}|^{1/j}$

- to 0 < r < R exist $C \in \mathbb{N}$: $|c_i| \le C/r^i$ (Cauchy-Hadamard)
- $\mathbb{N} \ni K :\geq 1/\log(r) = \Theta(1/(r-1))$ Unary
- tail bound $|\sum_{j\geq N} c_j z^j| \leq C \cdot (|z|/r)^N/(1-|z|/r)$

Complexity uniform in $|z| \le 1$: (i.e. R > 1)

Convergence degrades es as $r\rightarrow 1$; quantitatively?

Theorem 1: Represent series $\sum_j c_j z^j$ with R > 1 as [a $(\rho_{sd})^{\omega}$ -name of] (c_j) and $K, C \in \mathbb{N}$ as above. The following are uniformly computable in time polyn. in $n+K+\log(C)$: i) eval, ii) sum, iii) product, iv) derivative, v) anti-derivative, vi) max on [a,b]

Uniformly Polynomial Time Operations on Power Series

 $\sum_{i} (c_{i}) z^{j}$ • radius of convergence $R=1/\text{limsup}_{i} | c_{i}|$

- to 0 < r < R exist $C \in \mathbb{N}$: $|c_i| \le C/r^j$
- $\mathbb{N} \ni K :\geq 1/\log(r) = \Theta(1/(r-1))$
- tail bound $|\sum_{i\geq N} c_i z^i| \leq C \cdot (|z|/r)^N/(1-|z|)$

Proof (Sketch, i): $r \ge 2^{1/K}$ $N \approx K \cdot (n + \log K) + \log C$ $|\sum_{j \geq N} c_j z^j| \leq C \cdot 2^{-N/K} \cdot r \cdot K \leq 2^{-n}$

Theorem 1: Represent series $\sum_i c_i z^j$ with R > 1as [a $(\rho_{sd})^{\omega}$ -name of] (c_i) and $K, C \in \mathbb{N}$ as above. The following are uniformly computable in time polyn. in $n+K+\log(C)$: i) eval ii) sum, iii) product, iv) derivative, v) anti-derivative, vi) max on [a,b]

Uniformly Polynomial Time Operations on Power Series

 $\sum_{i} (c_{i}) z^{j}$ • radius of convergence $R=1/\text{limsup}_{i} | c_{i}$

- to 0 < r < R exist $C \in \mathbb{N}$: $|c_i| \le C/r^j$
- $\mathbb{N} \ni K :\geq 1/\log(r) = \Theta(1/(r-1))$ binar

Proof (Sketch, iv): $c_i = (j+1) \cdot c_{j+1}$

 $|c_i'| \le C'/r^j$ C' not continuously computable

 $|c_i'| \le C'/\sqrt{r^j}$ $C': \ge C \cdot (1+2K/e \cdot \ln 2)$ K': = 2K

Theorem 1: Represent series $\sum_i c_i z^j$ with R > 1as [a $(\rho_{sd})^{\omega}$ -name of] (c_i) and $K, C \in \mathbb{N}$ as above. The following are uniformly computable in time polyn. in $n+K+\log(C)$: i) eval, ii) sum, iii) product, iv) derivative v) anti-derivative, vi) max on [a,b]

Uniformly Polynomial Time Operations on Power Series

 $\sum_{i} (c_{i}) z^{j}$ • radius of convergence $R=1/\text{limsup}_{i} |c_{i}|^{1/j}$

• to 0 < r < R exist $C \in \mathbb{N}$: $|c_i| \le C/r^j$

rat. approx to b

Proof (Sketch, vi): $\sum_{i \le N} r_i x^j$ approx to $2^{-n-1} = \varepsilon/2$ $\Phi(\underline{a},\underline{b},\underline{y},\underline{r}_0,\ldots,\underline{r}_N) := \exists x : x \ge \underline{a} \land x \le \underline{b} \land \sum_{i \le N} \underline{r}_i x^i \ge \underline{y}$ ∃-quant. FO sentence over R with Z coefficients [Tarski] ⇔ quant.-free FO Ψ comput. in poly.time

Theorem 1: Represent series $\sum_i c_i z^j$ with R > 1as [a $(\rho_{sd})^{\omega}$ -name of] (c_i) and $K, C \in \mathbb{N}$ as above. The following are uniformly computable in time polyn. in $n+K+\log(C)$: i) eval, ii) sum, iii) product, iv) derivative, v) anti-derivative vi) max on [a,b]

Real Analytic Functions on [0,1]

Definition: $C^{\omega}[0,1] := \{ f:[0,1] \to \mathbb{R} \text{ restriction of complex differentiable } g:U \to \mathbb{C}, [0,1] \subseteq U \subseteq \mathbb{C} \text{ open } \}$

- real sequence $f(d)_{d \in \mathbb{D} \cap [0,1]}$
- $L \in \mathbb{N}$ binary: $R_L \subseteq U$
- $G \in \mathbb{N}$ unary $\forall z \in R_L$: $|g'(z)| \leq G$.

Theorem 2: These are mutually polyn.-time equivalent

Equival.: $f \in C^{\infty}[0,1]$ and $\exists F,L \in \mathbb{N} \ \forall x \ \forall j$: $|f^{(j)}(x)| \leq F \cdot L^{j}$

• real sequence $f(d)_{d \in \mathbb{D}}$ and $F \in \mathbb{N}$ binary, $L \in \mathbb{N}$ unary

Equival: f finitely many local power series on [0,1]

$$\sum_{j} (c_{j,m})^{j} (z-x_{m})^{j}, m=1...M \text{ unary } C_{m} K_{m} \in \mathbb{N}: |c_{j,m}| \leq C_{m}/r_{m}^{j}$$

Theorem 3: On $C^{\omega}[0,1]$, i) eval ii) sum ... vi) max are computable within parameterized polyn. time

Conclusion and Perspectives

Functions in Polytime

For the space of real analytic functions, presented

- uniform strengthenings of previous algorithms
- with parameterized upper complexity bounds
- and specification of (additional discrete) data
 i.e. function interface declarations
- Actually implement the algorithms
- Quantitatively refine parameterized polytime upper complexity bounds
- multivariate power series? Gevrey?
- Devise new approaches (e.g. to solving ODEs)
- Collaboration of CCA and Interval communities!

Remember Dagstuhl 2006

Functions in Polytime

Reliable Implementation c Real Number Algorithms: Theory and Practice