
15th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics
Novosibirsk, Russia, 23-29 September 2012

Approach based on instruction selection for fast
and certified code generation

Christophe Mouilleron Amine Najahi Guillaume Revy

Univ. Perpignan Via Domitia, DALI project-team
Univ. Montpellier 2, LIRMM, UMR 5506

CNRS, LIRMM, UMR 5506

D
A

LI

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 1/20

Motivation

Embedded systems are ubiquitous

I microprocessors and/or DSPs dedicated to one or a few specific tasks
I satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

Embedded systems

No FPU

Highly used in audio and video applications
I demanding on floating-point computations

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 2/20

Motivation

Embedded systems are ubiquitous

I microprocessors and/or DSPs dedicated to one or a few specific tasks
I satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

FP computations

Applications

Embedded systems

No FPU

Highly used in audio and video applications
I demanding on floating-point computations

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 2/20

Motivation

Embedded systems are ubiquitous

I microprocessors and/or DSPs dedicated to one or a few specific tasks
I satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

floating−point arithmetic

Software implementing

FP computations

Applications

Embedded systems

No FPU

Highly used in audio and video applications
I demanding on floating-point computations

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 2/20

Motivation

Embedded systems are ubiquitous

I microprocessors and/or DSPs dedicated to one or a few specific tasks
I satisfy constraints: area, energy consumption, conception cost

Some embedded systems do not have any FPU (floating-point unit)

Conversion

FP computations

Applications

Fixed−point

Embedded systems

No FPU

Highly used in audio and video applications
I demanding on floating-point computations

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 2/20

Motivation

In this talk, we will focus on polynomial evaluation

I it frequently appears as a building block of some mathematical operator
implementation floating-point support emulation

I it can be used to convert calls to floating-point operators into fixed-point code
 fixed-point conversion

Remark: There is a huge number of schemes to evaluate a given polynomial,
even for small degree

I degree-5 univariate polynomial 2334244 different schemes

There is a need for the automation of the design
of polynomial evaluation codes CGPE.

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 3/20

Outline of the talk

1. The CGPE tool

2. Approach based on instruction selection

3. Conclusion and perspectives

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 4/20

The CGPE tool

Outline of the talk

1. The CGPE tool

2. Approach based on instruction selection

3. Conclusion and perspectives

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 5/20

The CGPE tool

Overview of CGPE

Goal of CGPE: automate the design of fast and certified C codes for evaluating
univariate or bivariate polynomials in fixed-point arithmetic

I by using unsigned fixed-point arithmetic only
I by using the target architecture features (as much as possible)

Remarks on CGPE

I fast that reduce the evaluation latency on a given target
I certified for which we can bound the error entailed by the evaluation within the

given target’s arithmetic

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 6/20

The CGPE tool

Global architecture of CGPE

Input of CGPE

cgpe --degree="[8,1]" --xml-input=cgpe -test1.xml --coefs="[100000000111111111]" \
--latency=lowest --gappa -certificate --output \
--schedule="[4,2]" --max-kept=5 --operators="[111111111111111111:033333333000333330]" ...

1. polynomial coefficients and variables: value intervals, fixed-point format, ...

2. set of criteria: maximum error bound and bound on latency (or the lowest)

3. some architectural constraints: operator cost, parallelism level, ...

<polynomial >
<coefficient x="0" y="0" inf="0x00000020" sup="0x00000020" sign="0" integer_part="2" fraction_part="30"/>
<coefficient x="0" y="1" inf="0x80000000" sup="0x80000000" sign="0" integer_part="1" fraction_part="31"/>
<coefficient x="1" y="1" inf="0x40000000" sup="0x40000000" sign="0" integer_part="1" fraction_part="31"/>
<coefficient x="2" y="1" inf="0x10000000" sup="0x10000000" sign="1" integer_part="1" fraction_part="31"/>
<coefficient x="3" y="1" inf="0x07fe93e4" sup="0x07fe93e4" sign="0" integer_part="1" fraction_part="31"/>
<coefficient x="4" y="1" inf="0x04eef694" sup="0x04eef694" sign="1" integer_part="1" fraction_part="31"/>
<coefficient x="5" y="1" inf="0x032d6643" sup="0x032d6643" sign="0" integer_part="1" fraction_part="31"/>
<coefficient x="6" y="1" inf="0x01c6cebd" sup="0x01c6cebd" sign="1" integer_part="1" fraction_part="31"/>
<coefficient x="7" y="1" inf="0x00aebe7d" sup="0x00aebe7d" sign="0" integer_part="1" fraction_part="31"/>
<coefficient x="8" y="1" inf="0x00200000" sup="0x00200000" sign="1" integer_part="1" fraction_part="31"/>
<variable x="1" y="0" inf="0x00000000" sup="0xfffffe00" sign="0" integer_part="0" fraction_part="32"/>
<variable x="0" y="1" inf="0x80000000" sup="0xb504f334" sign="0" integer_part="1" fraction_part="31"/>
<absolute_evalerror value="25081373483158693012463053528118040380976733198921b-191" strict="false"/>

</polynomial >

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 7/20

The CGPE tool

Global architecture of CGPE (cont’d)

Architecture of CGPE ≈ architecture of a compiler

I it proceeds in three main steps

1. Computation step front-end
I computes schemes reducing the

evaluation latency on unbounded
parallelism DAG

I considers only the cost of ⊕ and ⊗

2. Filtering step middle-end
I prunes the DAGs that do not satisfy

different criteria:
• latency scheduling filter,
• accuracy numerical filter, ...

3. Generation step back-end
I generates C codes and Gappa

accuracy certificates

Set of DAGs

Decorated DAGs

ba
ck

-e
nd

fr
on

t-
en

d
m

id
dl

e-
en

d

<architecture>

<instruction name="add"
type="unsigned"

nodes="add dag 1 ..."
macro="static inline ..."
gappa="..."
...

 <coefficient ... >

 <variable ... >
 ...

</polynomial>
 ...

</architecture>

<polynomial>

latency="1"

polynomial.xml

architecture.xml

Code generator

Filter n

Accuracy certificates

Filter 1

DAG computation

C files

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 8/20

The CGPE tool

Global architecture of CGPE (cont’d)

Architecture of CGPE ≈ architecture of a compiler

I it proceeds in three main steps

1. Computation step front-end
I computes schemes reducing the

evaluation latency on unbounded
parallelism DAG

I considers only the cost of ⊕ and ⊗

2. Filtering step middle-end
I prunes the DAGs that do not satisfy

different criteria:
• latency scheduling filter,
• accuracy numerical filter, ...

3. Generation step back-end
I generates C codes and Gappa

accuracy certificates

Set of DAGs

Decorated DAGs

ba
ck

-e
nd

fr
on

t-
en

d
m

id
dl

e-
en

d

<architecture>

<instruction name="add"
type="unsigned"

nodes="add dag 1 ..."
macro="static inline ..."
gappa="..."
...

 <coefficient ... >

 <variable ... >
 ...

</polynomial>
 ...

</architecture>

<polynomial>

latency="1"

polynomial.xml

architecture.xml

Code generator

Filter n

Accuracy certificates

Filter 1

DAG computation

C files

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 8/20

The CGPE tool

Global architecture of CGPE (cont’d)

Architecture of CGPE ≈ architecture of a compiler

I it proceeds in three main steps

1. Computation step front-end
I computes schemes reducing the

evaluation latency on unbounded
parallelism DAG

I considers only the cost of ⊕ and ⊗

2. Filtering step middle-end
I prunes the DAGs that do not satisfy

different criteria:
• latency scheduling filter,
• accuracy numerical filter, ...

3. Generation step back-end
I generates C codes and Gappa

accuracy certificates

Set of DAGs

Decorated DAGs

ba
ck

-e
nd

fr
on

t-
en

d
m

id
dl

e-
en

d

<architecture>

<instruction name="add"
type="unsigned"

nodes="add dag 1 ..."
macro="static inline ..."
gappa="..."
...

 <coefficient ... >

 <variable ... >
 ...

</polynomial>
 ...

</architecture>

<polynomial>

latency="1"

polynomial.xml

architecture.xml

Code generator

Filter n

Accuracy certificates

Filter 1

DAG computation

C files

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 8/20

The CGPE tool

Recent contributions to CGPE

Features achieved by CGPE

I validated on the ST200 core
√

x , 3
√

x , 1
x , 1√

x
, 1

3√x
, x

y , · · ·
I CGPE produces optimal schemes in terms of latency for some of the above functions

Features lacking in CGPE, and contributions
I no support for signed fixed-point arithmetic

extension of the arithmetic model

• handling of variables of constants sign

 problem: CGPE fails in evaluating polynomials around one of its roots

I hypotheses are made on the format of the inputs

shift handling

• no shift operators are allowed during the evaluation

 problem: CGPE fails in evaluating polynomials with inputs having incorrect formats

I simple description of the target architecture

filter based on instruction selection

• no handling of advanced operators

 problem: CGPE fails in making the most out of any advanced instructions

 main motivation: it may absorb shifts appearing in the DAG, eventually in the critical path

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 9/20

The CGPE tool

Recent contributions to CGPE

Features achieved by CGPE

I validated on the ST200 core
√

x , 3
√

x , 1
x , 1√

x
, 1

3√x
, x

y , · · ·
I CGPE produces optimal schemes in terms of latency for some of the above functions

Features lacking in CGPE, and contributions
I no support for signed fixed-point arithmetic extension of the arithmetic model

• handling of variables of constants sign

 problem: CGPE fails in evaluating polynomials around one of its roots

I hypotheses are made on the format of the inputs shift handling
• no shift operators are allowed during the evaluation

 problem: CGPE fails in evaluating polynomials with inputs having incorrect formats

I simple description of the target architecture filter based on instruction selection

• no handling of advanced operators

 problem: CGPE fails in making the most out of any advanced instructions

 main motivation: it may absorb shifts appearing in the DAG, eventually in the critical path

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 9/20

The CGPE tool

Recent contributions to CGPE

Features achieved by CGPE

I validated on the ST200 core
√

x , 3
√

x , 1
x , 1√

x
, 1

3√x
, x

y , · · ·
I CGPE produces optimal schemes in terms of latency for some of the above functions

Features lacking in CGPE, and contributions
I no support for signed fixed-point arithmetic extension of the arithmetic model

• handling of variables of constants sign

 problem: CGPE fails in evaluating polynomials around one of its roots

I hypotheses are made on the format of the inputs shift handling
• no shift operators are allowed during the evaluation

 problem: CGPE fails in evaluating polynomials with inputs having incorrect formats

I simple description of the target architecture filter based on instruction selection

• no handling of advanced operators

 problem: CGPE fails in making the most out of any advanced instructions

 main motivation: it may absorb shifts appearing in the DAG, eventually in the critical path

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 9/20

Approach based on instruction selection

Outline of the talk

1. The CGPE tool

2. Approach based on instruction selection

3. Conclusion and perspectives

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 10/20

Approach based on instruction selection

Introduction to instruction selection

It is a well known problem in compilation proven to be NP-complete on DAGs

Usually solved using a tiling algorithm:
I input:

• a DAG representing an arithmetic expression,

• a set of tiles, with a cost for each,

• a function that associates a cost to a DAG.

I output: a set of covering tiles that minimize the cost function.

Examples of advanced instructions

I fma on IEEE processors a * b + c with only one final rounding
I mulacc on some DSP a * b + c

I shift-and-add instruction on the ST231 a << b + c in 1 cycle, with b ∈ {1, · · · ,4}

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 11/20

Approach based on instruction selection

Motivation of using instruction selection inside CGPE

Related work: Voronenko and Püschel from the Spiral group

I Automatic Generation of Implementations for DSP Transforms on Fused Multiply-Add
Architectures (2004)

I Mechanical Derivation of Fused Multiply-Add Algorithms for Linear Transforms (2007)

3 they provide a short proof of optimality in the case of trees

7 their method handles fma in DAGs but is not generic

Our goal is twofold:

1. to handle any advanced instruction described in an external XML file

2. to integrate a numerical verification step in the process of instruction selection

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 12/20

Approach based on instruction selection

Motivation of using instruction selection inside CGPE

Related work: Voronenko and Püschel from the Spiral group

I Automatic Generation of Implementations for DSP Transforms on Fused Multiply-Add
Architectures (2004)

I Mechanical Derivation of Fused Multiply-Add Algorithms for Linear Transforms (2007)

3 they provide a short proof of optimality in the case of trees

7 their method handles fma in DAGs but is not generic

Our goal is twofold:

1. to handle any advanced instruction described in an external XML file

2. to integrate a numerical verification step in the process of instruction selection

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 12/20

Approach based on instruction selection

Motivation of using instruction selection inside CGPE

Related work: Voronenko and Püschel from the Spiral group

I Automatic Generation of Implementations for DSP Transforms on Fused Multiply-Add
Architectures (2004)

I Mechanical Derivation of Fused Multiply-Add Algorithms for Linear Transforms (2007)

3 they provide a short proof of optimality in the case of trees

7 their method handles fma in DAGs but is not generic

Our goal is twofold:

1. to handle any advanced instruction described in an external XML file

2. to integrate a numerical verification step in the process of instruction selection

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 12/20

Approach based on instruction selection

XML architecture description file

<architecture >

<!-- 32 x 32 -> 32-bit unsigned adder -->
<instruction name="add"

type="unsigned"
latency="1"

nodes="add dag 1 dag 2"

macro="static inline
uint32_t __name__(uint32_t a, uint32_t b)
{

return (a + b);
}"

gappa="_r_ fixed <-_Fr_ ,dn>= _1_ + _2_; _Mr_ = _M1_ + _M2_;"
/>

<! -- -->
</architecture >

For each instruction, the XML architecture description file contains:

I the name, the type (signed or unsigned), the latency (# cycles),
I a description of the pattern matched by the instruction,
I a C macro for emulating the instruction in software,
I and a piece of Gappa script for computing the error entailed by the instruction

evaluation in fixed-point arithmetic.

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 13/20

Approach based on instruction selection

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
1: BottomUpDP() + TopDownSelect()
2: ImproveCSEDecision()
3: BottomUpDP() + TopDownSelect()

Example: how to evaluate a0 +
(
(a1 · x)+

((
a2 · (x · x)

)
� 1

))
?

BottomUpDP()addition / shift 1 cycle

shift-and-add 1 cycle

multiplication 3 cycles

+

a0 +

×

a1 x

�

×

a2 ×

x x

1

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 14/20

Approach based on instruction selection

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
1: BottomUpDP() + TopDownSelect()
2: ImproveCSEDecision()
3: BottomUpDP() + TopDownSelect()

Example: how to evaluate a0 +
(
(a1 · x)+

((
a2 · (x · x)

)
� 1

))
?

3

BottomUpDP()addition / shift 1 cycle

shift-and-add 1 cycle

multiplication 3 cycles

+

a0 +

×

a1 x

�

×

a2 ×

x x

1

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 14/20

Approach based on instruction selection

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
1: BottomUpDP() + TopDownSelect()
2: ImproveCSEDecision()
3: BottomUpDP() + TopDownSelect()

Example: how to evaluate a0 +
(
(a1 · x)+

((
a2 · (x · x)

)
� 1

))
?

3

6

BottomUpDP()addition / shift 1 cycle

shift-and-add 1 cycle

multiplication 3 cycles

+

a0 +

×

a1 x

�

×

a2 ×

x x

1

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 14/20

Approach based on instruction selection

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
1: BottomUpDP() + TopDownSelect()
2: ImproveCSEDecision()
3: BottomUpDP() + TopDownSelect()

Example: how to evaluate a0 +
(
(a1 · x)+

((
a2 · (x · x)

)
� 1

))
?

3

6

73

BottomUpDP()addition / shift 1 cycle

shift-and-add 1 cycle

multiplication 3 cycles

+

a0 +

×

a1 x

�

×

a2 ×

x x

1

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 14/20

Approach based on instruction selection

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
1: BottomUpDP() + TopDownSelect()
2: ImproveCSEDecision()
3: BottomUpDP() + TopDownSelect()

Example: how to evaluate a0 +
(
(a1 · x)+

((
a2 · (x · x)

)
� 1

))
?

3

6

73

8 BottomUpDP()addition / shift 1 cycle

shift-and-add 1 cycle

multiplication 3 cycles

+

a0 +

×

a1 x

�

×

a2 ×

x x

1

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 14/20

Approach based on instruction selection

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
1: BottomUpDP() + TopDownSelect()
2: ImproveCSEDecision()
3: BottomUpDP() + TopDownSelect()

Example: how to evaluate a0 +
(
(a1 · x)+

((
a2 · (x · x)

)
� 1

))
?

3

6

73

87 BottomUpDP()addition / shift 1 cycle

shift-and-add 1 cycle

multiplication 3 cycles

+

a0 +

×

a1 x

�

×

a2 ×

x x

1

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 14/20

Approach based on instruction selection

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
1: BottomUpDP() + TopDownSelect()
2: ImproveCSEDecision()
3: BottomUpDP() + TopDownSelect()

Example: how to evaluate a0 +
(
(a1 · x)+

((
a2 · (x · x)

)
� 1

))
?

3

6

73

87

8

BottomUpDP()addition / shift 1 cycle

shift-and-add 1 cycle

multiplication 3 cycles

+

a0 +

×

a1 x

�

×

a2 ×

x x

1

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 14/20

Approach based on instruction selection

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
1: BottomUpDP() + TopDownSelect()
2: ImproveCSEDecision()
3: BottomUpDP() + TopDownSelect()

Example: how to evaluate a0 +
(
(a1 · x)+

((
a2 · (x · x)

)
� 1

))
?

3

6

3

7

8

TopDownSelect()addition / shift 1 cycle

shift-and-add 1 cycle

multiplication 3 cycles

+

a0 +

×

a1 x

�

×

a2 ×

x x

1

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 14/20

Approach based on instruction selection

The NOLTIS tiling algorithm

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)
1: BottomUpDP() + TopDownSelect()
2: ImproveCSEDecision()
3: BottomUpDP() + TopDownSelect()

Example: how to evaluate a0 +
(
(a1 · x)+

((
a2 · (x · x)

)
� 1

))
?

In our case, only the first step of NOLTIS is valuable.

NOLTIS algorithm mainly relies on the evaluation of a cost function. We have
implemented three different cost functions:

 number of operator (regardless commun subexpressions)

 evaluation latency on unbounded parallelism

 evaluation accuracy, computed by using the piece of Gappa script for each instruction

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 14/20

Approach based on instruction selection

Remarks on instruction selection in CGPE

A separation is achieved between the computation of the intermediate
representation and the code generation process

I we can generate codes according different criteria
I we can generate target-dependent codes without writing new computation algorithms

each time a new instruction is available
I this general approach allows to tackle other

problems (sum, dot-product, ...)

We are not bounded to basic instructions
I we can add many others advanced

instructions or basic blocks
I this general approach allows to give some

feedback on the eventual need of some
new instructions

Set of DAGs

Decorated DAGs
ba

ck
-e

nd
fr

on
t-

en
d

m
id

dl
e-

en
d

<architecture>

<instruction name="add"
type="unsigned"

nodes="add dag 1 ..."
macro="static inline ..."
gappa="..."
...

 <coefficient ... >

 <variable ... >
 ...

</polynomial>
 ...

</architecture>

<polynomial>

latency="1"

polynomial.xml

architecture.xml

Code generator

Filter n

Accuracy certificates

Filter 1

DAG computation

C files

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 15/20

Approach based on instruction selection

Remarks on instruction selection in CGPE

A separation is achieved between the computation of the intermediate
representation and the code generation process

I we can generate codes according different criteria
I we can generate target-dependent codes without writing new computation algorithms

each time a new instruction is available
I this general approach allows to tackle other

problems (sum, dot-product, ...)

We are not bounded to basic instructions
I we can add many others advanced

instructions or basic blocks
I this general approach allows to give some

feedback on the eventual need of some
new instructions

Set of DAGs

Decorated DAGs
ba

ck
-e

nd
fr

on
t-

en
d

m
id

dl
e-

en
d

<architecture>

<instruction name="add"
type="unsigned"

nodes="add dag 1 ..."
macro="static inline ..."
gappa="..."
...

 <coefficient ... >

 <variable ... >
 ...

</polynomial>
 ...

</architecture>

<polynomial>

latency="1"

polynomial.xml

architecture.xml

Code generator

Filter n

Accuracy certificates

Filter 1

DAG computation

C files

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 15/20

Approach based on instruction selection

Impact on the number of instructions

 26

 28

 30

 32

 34

 36

 38

 40

 42

cos(x) sin(x) log2(1+x)

A
v
e
ra

g
e

 n
u
m

b
e
r

o
f

in
s
tr

u
c
ti
o
n

s

no advanced instructions

add-add

mulacc

shift-add left

shift-add right

Figure: Average number of instructions in 50 synthesized
codes, for the evaluation of polynomials of degree 5 up to
12 for various elementary functions.

Remark 1: average reduction
of 8.7 % up to 13.75 %

Remark 2: interest of ST231
shift-and-add for sin(x)
implementation
 reduction of 8.7 %

Remark 3: interest of
shift-and-add with right shift
for cos(x) and log2(1+ x)
implementation
 reduction of 12.8 % and
13.75 %, respectively

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 16/20

Approach based on instruction selection

Impact on the latency

Polynomial: degree-7 polynomial approximating the function cos(x) over [0,2]

Architecture:

I 1 cycle addition/subtraction and shift-and-add
I 3-cycle multiplication and mulacc

Without tiling With tiling Speed-up

Horner’s rule 41 34 ≈ 17.07 %

Estrin’s rule 16 14 ≈ 12.5 %

Best scheme 15 13 ≈ 13.33 %

Table: Latency in # cycles on unbounded parallelism, for various schemes, with and without tiling.

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 17/20

Conclusion and perspectives

Outline of the talk

1. The CGPE tool

2. Approach based on instruction selection

3. Conclusion and perspectives

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 18/20

Conclusion and perspectives

Conclusion and perspectives

Target-dependent code generation for fast and certified polynomial evaluation

I in signed and unsigned fixed point arithmetic

I using filter based on instruction selection, so as to make the most out advanced
instructions

I selection according different criteria: operator count, latency on unbounded
parallelism, accuracy

http://cgpe.gforge.inria.fr/

Further extensions of CGPE

I to tackle other problems, like summation, dot-product, ...
I to handle other arithmetics like floating-point arithmetic, where the fma instruction is

more and more ubiquitous
I to target other architectures (like FPGAs)

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 19/20

http://cgpe.gforge.inria.fr/

15th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics
Novosibirsk, Russia, 23-29 September 2012

Approach based on instruction selection for fast
and certified code generation

Christophe Mouilleron Amine Najahi Guillaume Revy

Univ. Perpignan Via Domitia, DALI project-team
Univ. Montpellier 2, LIRMM, UMR 5506

CNRS, LIRMM, UMR 5506

D
A

LI

G. Revy (DALI UPVD/LIRMM, UM2, CNRS) Approach based on instruction selection for fast and certified code generation 20/20

	RAIM 2012
	The CGPE tool
	Approach based on instruction selection
	Conclusion and perspectives
	

