15th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics Novosibirsk, Russia, 23-29 September 2012

Approach based on instruction selection for fast and certified code generation

Christophe Mouilleron Amine Najahi Guillaume Revy

Univ. Perpignan Via Domitia, DALI project-team Univ. Montpellier 2, LIRMM, UMR 5506 CNRS, LIRMM, UMR 5506

- Embedded systems are ubiquitous
 - microprocessors and/or DSPs dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost
- Some embedded systems do not have any FPU (floating-point unit)

Highly used in audio and video applications

demanding on floating-point computations

- Embedded systems are ubiquitous
 - microprocessors and/or DSPs dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost
- Some embedded systems do not have any FPU (floating-point unit)

- Highly used in audio and video applications
 - demanding on floating-point computations

- Embedded systems are ubiquitous
 - microprocessors and/or DSPs dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost
- Some embedded systems do not have any FPU (floating-point unit)

Highly used in audio and video applications

demanding on floating-point computations

- Embedded systems are ubiquitous
 - microprocessors and/or DSPs dedicated to one or a few specific tasks
 - satisfy constraints: area, energy consumption, conception cost
- Some embedded systems do not have any FPU (floating-point unit)

Highly used in audio and video applications

demanding on floating-point computations

In this talk, we will focus on polynomial evaluation

- ► it frequently appears as a building block of some mathematical operator implementation ~→ floating-point support emulation
- Remark: There is a huge number of schemes to evaluate a given polynomial, even for small degree
 - ► degree-5 univariate polynomial ~→ 2334244 different schemes

There is a need for the automation of the design of polynomial evaluation codes \rightsquigarrow CGPE.

Outline of the talk

1. The CGPE tool

2. Approach based on instruction selection

3. Conclusion and perspectives

Outline of the talk

1. The CGPE tool

2. Approach based on instruction selection

3. Conclusion and perspectives

Overview of CGPE

- Goal of CGPE: automate the design of fast and certified C codes for evaluating univariate or bivariate polynomials in fixed-point arithmetic
 - by using unsigned fixed-point arithmetic only
 - by using the target architecture features (as much as possible)

Remarks on CGPE

- ▶ fast ~→ that reduce the evaluation latency on a given target
- ► certified ~→ for which we can bound the error entailed by the evaluation within the given target's arithmetic

Global architecture of CGPE

Input of CGPE

```
cgpe --degree="[8,1]" --xml-input=cgpe-test1.xml --coefs="[100000000111111111]"
--latency=lowest --gappa-certificate --output
--schedule="[4,2]" --max-kept=5 --operators="[1111111111111111111033333333000333330]" ...
```

- 1. polynomial coefficients and variables: value intervals, fixed-point format, ...
- 2. set of criteria: maximum error bound and bound on latency (or the lowest)
- 3. some architectural constraints: operator cost, parallelism level, ...

x = 0 integer nart="2" fraction nart="30"/>	
Cooling and a second of the second of the second of the second se	
<coefficient fraction_part="31" inf="0x80000000" integer_part="1" sign="0" sup="0x80000000" x="0" y="1"></coefficient>	
<coefficient fraction_part="31" inf="0x40000000" integer_part="1" sign="0" sup="0x40000000" x="1" y="1"></coefficient>	
<coefficient fraction_part="31" inf="0x10000000" integer_part="1" sign="1" sup="0x10000000" x="2" y="1"></coefficient>	
<coefficient fraction_part="31" inf="0x07fe93e4" integer_part="1" sign="0" sup="0x07fe93e4" x="3" y="1"></coefficient>	
<coefficient fraction_part="31" inf="0x04eef694" integer_part="1" sign="1" sup="0x04eef694" x="4" y="1"></coefficient>	
<coefficient fraction_part="31" inf="0x032d6643" integer_part="1" sign="0" sup="0x032d6643" x="5" y="1"></coefficient>	
<coefficient fraction_part="31" inf="0x0lc6cebd" integer_part="1" sign="1" sup="0x0lc6cebd" x="6" y="1"></coefficient>	
<coefficient fraction_part="31" inf="0x00aebe7d" integer_part="1" sign="0" sup="0x00aebe7d" x="7" y="1"></coefficient>	
<coefficient fraction_part="31" inf="0x00200000" integer_part="1" sign="1" sup="0x00200000" x="8" y="1"></coefficient>	
<variable fraction_part="32" inf="0x00000000" integer_part="0" sign="0" sup="0xfffffe00" x="1" y="0"></variable>	
<pre><variable fraction_part="31" inf="0x80000000" integer_part="1" sign="0" sup="0xb504f334" x="0" y="1"></variable></pre>	
<absolute_evalerror strict="false" value="25081373483158693012463053528118040380976733198921b-191"></absolute_evalerror>	

Global architecture of CGPE (cont'd)

- Architecture of CGPE \approx architecture of a compiler
 - it proceeds in three main steps
 - 1. Computation step ~> front-end
 - ► computes schemes reducing the evaluation latency on unbounded parallelism → DAG
 - considers only the cost of \oplus and \otimes

Global architecture of CGPE (cont'd)

- Architecture of CGPE \approx architecture of a compiler
 - it proceeds in three main steps
 - 1. Computation step ~> front-end
 - computes schemes reducing the evaluation latency on unbounded parallelism ~> DAG
 - considers only the cost of \oplus and \otimes
 - 2. Filtering step \rightsquigarrow middle-end
 - prunes the DAGs that do not satisfy different criteria:
 - latency → scheduling filter,
 - accuracy ~> numerical filter, ...

Global architecture of CGPE (cont'd)

- Architecture of CGPE \approx architecture of a compiler
 - it proceeds in three main steps
 - 1. Computation step \rightsquigarrow front-end
 - computes schemes reducing the evaluation latency on unbounded parallelism ~> DAG
 - considers only the cost of \oplus and \otimes
 - 2. Filtering step ~> middle-end
 - prunes the DAGs that do not satisfy different criteria:
 - latency → scheduling filter,
 - accuracy → numerical filter, …
 - 3. Generation step \rightsquigarrow back-end
 - generates C codes and Gappa accuracy certificates

Recent contributions to CGPE

Features achieved by CGPE

- ▶ validated on the ST200 core $\rightarrow \sqrt{x}$, $\sqrt[3]{x}$, $\frac{1}{x}$, $\frac{1}{\sqrt{x}}$, $\frac{1}{\sqrt{x}}$, $\frac{x}{y}$, ...
- CGPE produces optimal schemes in terms of latency for some of the above functions
- Features lacking in CGPE, and contributions
 - no support for signed fixed-point arithmetic
 - handling of variables of constants sign
 - → problem: CGPE fails in evaluating polynomials around one of its roots
 - hypotheses are made on the format of the inputs
 - no shift operators are allowed during the evaluation
 - → problem: CGPE fails in evaluating polynomials with inputs having incorrect formats
 - simple description of the target architecture
 - no handling of advanced operators
 - → problem: CGPE fails in making the most out of any advanced instructions

Recent contributions to CGPE

- Features achieved by CGPE
 - ▶ validated on the ST200 core $\rightarrow \sqrt{x}$, $\sqrt[3]{x}$, $\frac{1}{x}$, $\frac{1}{\sqrt{x}}$, $\frac{1}{\sqrt{x}}$, $\frac{x}{y}$, ...
 - CGPE produces optimal schemes in terms of latency for some of the above functions
- Features lacking in CGPE, and contributions
 - no support for signed fixed-point arithmetic
 - handling of variables of constants sign
 - → problem: CGPE fails in evaluating polynomials around one of its roots
 - hypotheses are made on the format of the inputs
 - no shift operators are allowed during the evaluation
 - problem: CGPE fails in evaluating polynomials with inputs having incorrect formats
 - simple description of the target architecture filter based on instruction selection
 - no handling of advanced operators
 - → problem: CGPE fails in making the most out of any advanced instructions

shift handling

extension of the arithmetic model

shint handling

Recent contributions to CGPE

- Features achieved by CGPE
 - ▶ validated on the ST200 core $\rightarrow \sqrt{x}$, $\sqrt[3]{x}$, $\frac{1}{x}$, $\frac{1}{\sqrt{x}}$, $\frac{1}{\sqrt{x}}$, $\frac{x}{y}$, ...
 - CGPE produces optimal schemes in terms of latency for some of the above functions
- Features lacking in CGPE, and contributions
 - no support for signed fixed-point arithmetic
 - handling of variables of constants sign
 - → problem: CGPE fails in evaluating polynomials around one of its roots
 - hypotheses are made on the format of the inputs
 - no shift operators are allowed during the evaluation
 - → problem: CGPE fails in evaluating polynomials with inputs having incorrect formats
 - simple description of the target architecture filter based on instruction selection
 - no handling of advanced operators
 - → problem: CGPE fails in making the most out of any advanced instructions
 - \rightsquigarrow main motivation: it may absorb shifts appearing in the DAG, eventually in the critical path

shift handling

extension of the arithmetic model

Outline of the talk

1. The CGPE tool

2. Approach based on instruction selection

3. Conclusion and perspectives

Introduction to instruction selection

- It is a well known problem in compilation ~>> proven to be NP-complete on DAGs
- Usually solved using a tiling algorithm:
 - ► input:
 - a DAG representing an arithmetic expression,
 - a set of tiles, with a cost for each,
 - a function that associates a cost to a DAG.
 - output: a set of covering tiles that minimize the cost function.
- Examples of advanced instructions
 - fma on IEEE processors ~> a * b + c with only one final rounding
 - mulacc on some DSP ~> a * b + c
 - ▶ shift-and-add instruction on the ST231 \rightsquigarrow a \ll b + c in 1 cycle, with b \in {1, \cdots , 4}

Motivation of using instruction selection inside CGPE

Related work: Voronenko and Püschel from the Spiral group

- Automatic Generation of Implementations for DSP Transforms on Fused Multiply-Add Architectures (2004)
- Mechanical Derivation of Fused Multiply-Add Algorithms for Linear Transforms (2007)

Motivation of using instruction selection inside CGPE

Related work: Voronenko and Püschel from the Spiral group

- Automatic Generation of Implementations for DSP Transforms on Fused Multiply-Add Architectures (2004)
- Mechanical Derivation of Fused Multiply-Add Algorithms for Linear Transforms (2007)
- $\checkmark\,$ they provide a short proof of optimality in the case of trees
- X their method handles fma in DAGs but is not generic

Motivation of using instruction selection inside CGPE

Related work: Voronenko and Püschel from the Spiral group

- Automatic Generation of Implementations for DSP Transforms on Fused Multiply-Add Architectures (2004)
- Mechanical Derivation of Fused Multiply-Add Algorithms for Linear Transforms (2007)
- $\checkmark\,$ they provide a short proof of optimality in the case of trees
- X their method handles fma in DAGs but is not generic

Our goal is twofold:

- 1. to handle any advanced instruction \rightsquigarrow described in an external XML file
- 2. to integrate a numerical verification step in the process of instruction selection

XML architecture description file

```
<architecture>
    <!-- 32 x 32 -> 32-bit unsigned adder -->
    <instruction name="add"
        type="unsigned"
        latency="1"
        nodes="add dag 1 dag 2"
        macro="static inline
            uint32_t ___name__(uint32_t a, uint32_t b)
            (
            return (a + b);
            );
            return (a + b);
            /*
            <gappa="_r__ fixed<-_Fr__,dn>= _1__ + _2_; ___Mr__ = _M1__ + _M2_;;"
            </architecture>
```

For each instruction, the XML architecture description file contains:

- the name, the type (signed or unsigned), the latency (# cycles),
- a description of the pattern matched by the instruction,
- a C macro for emulating the instruction in software,
- and a piece of Gappa script for computing the error entailed by the instruction evaluation in fixed-point arithmetic.

Near-Optimal Instruction Selection algorithm (Koes and Goldstein in CGO-2008)

- 1: BottomUpDP() + TopDownSelect()
- 2: ImproveCSEDecision()
- 3: BottomUpDP() + TopDownSelect()

Example: how to evaluate
$$a_0 + ((a_1 \cdot x) + ((a_2 \cdot (x \cdot x)) \ll 1))?$$

shift-and-add \rightsquigarrow 1 cycle

multiplication ~>> 3 cycles

- 1: BottomUpDP() + TopDownSelect()
- 2: ImproveCSEDecision()
- 3: BottomUpDP() + TopDownSelect()

Example: how to evaluate
$$a_0 + ((a_1 \cdot x) + ((a_2 \cdot (x \cdot x)) \ll 1))?$$

- 1: BottomUpDP() + TopDownSelect()
- 2: ImproveCSEDecision()
- 3: BottomUpDP() + TopDownSelect()

Example: how to evaluate
$$a_0 + ((a_1 \cdot x) + ((a_2 \cdot (x \cdot x)) \ll 1))?$$

- 1: BottomUpDP() + TopDownSelect()
- 2: ImproveCSEDecision()
- 3: BottomUpDP() + TopDownSelect()

Example: how to evaluate
$$a_0 + ((a_1 \cdot x) + ((a_2 \cdot (x \cdot x)) \ll 1))?$$

- 1: BottomUpDP() + TopDownSelect()
- 2: ImproveCSEDecision()
- 3: BottomUpDP() + TopDownSelect()

Example: how to evaluate
$$a_0 + ((a_1 \cdot x) + ((a_2 \cdot (x \cdot x)) \ll 1))?$$

- 1: BottomUpDP() + TopDownSelect()
- 2: ImproveCSEDecision()
- 3: BottomUpDP() + TopDownSelect()

Example: how to evaluate
$$a_0 + ((a_1 \cdot x) + ((a_2 \cdot (x \cdot x)) \ll 1))?$$

- 1: BottomUpDP() + TopDownSelect()
- 2: ImproveCSEDecision()
- 3: BottomUpDP() + TopDownSelect()

Example: how to evaluate
$$a_0 + ((a_1 \cdot x) + ((a_2 \cdot (x \cdot x)) \ll 1))$$
?

- 1: BottomUpDP() + TopDownSelect()
- 2: ImproveCSEDecision()
- 3: BottomUpDP() + TopDownSelect()

Example: how to evaluate
$$a_0 + ((a_1 \cdot x) + ((a_2 \cdot (x \cdot x)) \ll 1))?$$

- 1: BottomUpDP() + TopDownSelect()
- 2: ImproveCSEDecision()
- 3: BottomUpDP() + TopDownSelect()

Example: how to evaluate
$$a_0 + ((a_1 \cdot x) + ((a_2 \cdot (x \cdot x)) \ll 1))$$
?

- In our case, only the first step of NOLTIS is valuable.
- NOLTIS algorithm mainly relies on the evaluation of a cost function. We have implemented three different cost functions:
 - ~ number of operator (regardless commun subexpressions)
 - → evaluation latency on unbounded parallelism
 - → evaluation accuracy, computed by using the piece of Gappa script for each instruction

Remarks on instruction selection in CGPE

- A separation is achieved between the computation of the intermediate representation and the code generation process
 - we can generate codes according different criteria
 - we can generate target-dependent codes without writing new computation algorithms each time a new instruction is available
 - this general approach allows to tackle other problems (sum, dot-product, ...)

Remarks on instruction selection in CGPE

- A separation is achieved between the computation of the intermediate representation and the code generation process
 - we can generate codes according different criteria
 - we can generate target-dependent codes without writing new computation algorithms each time a new instruction is available
 - this general approach allows to tackle other problems (sum, dot-product, ...)
- We are not bounded to basic instructions
 - we can add many others advanced instructions or basic blocks
 - this general approach allows to give some feedback on the eventual need of some new instructions

Impact on the number of instructions

Figure: Average number of instructions in 50 synthesized codes, for the evaluation of polynomials of degree 5 up to 12 for various elementary functions.

Remark 1: average reduction of 8.7 % up to 13.75 %

Remark 2: interest of ST231 shift-and-add for sin(x) implementation → reduction of 8.7 %

Remark 3: interest of shift-and-add with right shift for cos(x) and log₂(1 + x) implementation → reduction of 12.8 % and 13.75 %, respectively

Impact on the latency

Polynomial: degree-7 polynomial approximating the function cos(x) over [0,2]

Architecture:

- 1 cycle addition/subtraction and shift-and-add
- 3-cycle multiplication and mulacc

	Without tiling	With tiling	Speed-up
Horner's rule	41	34	pprox 17.07 %
Estrin's rule	16	14	pprox 12.5 %
Best scheme	15	13	pprox 13.33 %

Table: Latency in # cycles on unbounded parallelism, for various schemes, with and without tiling.

Outline of the talk

1. The CGPE tool

2. Approach based on instruction selection

3. Conclusion and perspectives

Conclusion and perspectives

- Target-dependent code generation for fast and certified polynomial evaluation
 - in signed and unsigned fixed point arithmetic
 - using filter based on instruction selection, so as to make the most out advanced instructions
 - selection according different criteria: operator count, latency on unbounded parallelism, accuracy

```
http://cgpe.gforge.inria.fr/
```

Further extensions of CGPE

- to tackle other problems, like summation, dot-product, ...
- to handle other arithmetics like floating-point arithmetic, where the fma instruction is more and more ubiquitous
- to target other architectures (like FPGAs)

15th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics Novosibirsk, Russia, 23-29 September 2012

Approach based on instruction selection for fast and certified code generation

Christophe Mouilleron Amine Najahi Guillaume Revy

Univ. Perpignan Via Domitia, DALI project-team Univ. Montpellier 2, LIRMM, UMR 5506 CNRS, LIRMM, UMR 5506

