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Objectives of the presentation

To show that interval linear programming
@ has important applications
@ has many nice results

® has challenging problems
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© Interval linear programming introduction

@ interval linear inequalities

@ complexity issues
© Interval linear programming problems

@ optimal value range

@ optimal solution set
© Interval linear programming applications

@ interval linear regression

@ constraint programming and global optimization
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Interval linear inequalities

An interval matrix

A=[AA={AcR™"|A<A<A}

The midpoint and radius matrices
1— 1-—
Ac = E(A +A), Ap:i= E(A - A).

Theorem (Oettli-Prager, 1964)

A vector x € R" is a solution of Ax = b if and only if

|ACX = bc| < AA|X‘ + ba.

A\,

Theorem (Gerlach, 1981)
A vector x € R" is a solution of Ax < b if and only if

Acx — be < AA‘X| + ba.
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Interval linear inequalities

Example (An interval polyhedron)

X2
10 —[2,5] —[7,11] [61,63]
[1,13] —[4, 6] [19,20]
[57 8] [—27 1] X S [157 22]
_[17 4] [57 9] [247 25]
- [57 6] - [07 4] [267 37]

-

’ 1’0 X1 @ union of all feasible
sets in light gray,
@ intersection of all

feasible sets in dark
gray,
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Interval linear programming
Linear programming

Three basic forms of linear programs
f(A, b,c) = minc’x subject to Ax = b, x >0,
f(A, b,c) = minc’x subject to Ax < b,
f(A, b,c) = min c"x subject to Ax < b, x > 0.

|

Interval linear programming
Family of linear programs with A € A, b€ b, c € c, in short

(

f(A,b,c) = minc’ x subject to Ax =) b, (x > 0).

The three forms are not transformable between each other!

S

@ determine the optimal value range;

@ determine a tight enclosure to the optimal solution set.
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Complexity of basic problems

Ax=b, x>0 Ax<b Ax<b, x>0

strong feasibility co-NP-hard polynomial polynomial

weak feasibility polynomial NP-hard polynomial
strong . .

“NP- I I | I

unboundedness co-NP-hard polynomia polynomia

weak suff. / necessary  suff. / necessary olvnomial

unboundedness conditions only conditions only poly
strong | il
optimality co-NP-hard co-NP-hard polynomia

weak optimality

optimal value
range

suff. / necessary
conditions only

f polynomial
f NP-hard

suff. / necessary
conditions only

_f NP-hard
f polynomial

suff. / necessary
conditions only

polynomial
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Optimal value range
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Optimal value range

Definition

:=minf(A, b,c) subjectto A€ A, beb, cec,

f
f:=maxf(A,b,c) subjectto ACA, beb, ccc.

4

Theorem (Rohn, 2006)

We have for type (Ax =b, x >0)

f=minc"x subject to Ax < b, Ax > b, x >0,
f= max f(A. — diag(p) Aa, bc + diag(p) ba,©).
pe{£1}m

v

Theorem (Vajda, 1961)

We have for type (Ax <b, x >0)

f=minc"x subject to Ax <b, x>0,
f=minc'x subject to Ax < b, x > 0.
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Optimal value range

Algorithm (Optimal value range [f, f])
@ Compute

f:=inf ¢/ x—cf|x| subjectto x e M,

where M is the primal solution set.
Q If f = oo, then set f := oo and stop.
© Compute

B:=sup bly+ bLly| subjectto y €N,

where N is the dual solution set.
Q If p = oo, then set f := 00 and stop.

© If the primal problem is strongly feasible, then set f=9;
otherwise set f := co.

M. Hladik (CUNI) New directions in interval linear programming 10 / 40



Optimal solution set
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Optimal solution set
The optimal solution set

Denote by S(A, b, ¢) the set of optimal solutions to

T

minc’ x subject to Ax=b, x >0,

Then the optimal solution set is defined

S=|J S(Abo).
A€A, beb, cec

Find a tight enclosure to S.
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Optimal solution set

Characterization

By duality theory, we have that x € S if and only if there is some y € R™,
Ac A, beb, and ¢ € c such that

Ax=b, x > 0, ATyS c, c'x= bTy,

where A€ A, beb, cec.

Relaxation

Relaxing the dependencies
Ax=b, x>0, ATy <c c'x= bTy,

which is described by

Ax<b, —Ax<—b, x>0,

Aly — ARly| <e, |c]x—bly| < cfx+ bAlyl.
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Linearization of |y|

Properties

@ The solution set is non-convex in general
@ It is linear at any orthant

@ NP-hard to obtain exact bounds

Theorem (Beaumont, 1998)
For every y € y C R with y <y one has

ly| < ay + B, (1)

where

a= =W s v

y—y y -

Yyl -

< |I<

Moreover, if y > 0 ory < 0 then (1) holds as equation.
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Linearization of |y|

Now, the linearization reads

Ax <b, —Ax < —b, x >0,
(Al — AL diag(a) )y < T+ ALB,
cTx+ (b7 — b ding(a) )y < bZB.
—eTx+ (bT b} diag(a) )y < bl s,

where
lyil=lyil . _
Al fvi<v
aj =< YiTYi Vs Yis
sgn(y;) if yi=yi
y.yil=yily;l . _
M0 i f ) & .
Bi = Yi=Yi nLs Y
0 if X,’ = yl'.
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Contractor

Algorithm (Optimal solution set contractor)

© Compute an initial interval enclosure x°, y°

Q /=0

© repeat
@ compute the interval hull x’,y’ of the linearized system;
Q@ i =i+1;

@ until improvement is nonsignificant;

O return x':

Properties

@ Each iteration requires computing the interval hull
(2(m + n) linear programs).

@ In practice, it converges quickly, but not to S in general.
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Example

Consider an interval linear program

min —[15,16]x; — [17,18]x> subject to
x < [10,11],
—x1 + [5,6]x < [25,26],
[6,6.5]x -+ [3,4.5]x < [81,82],
—x; < —1,
x1 — [10,12]x < —[1,2].

Take the initial enclosure

x® =1000- ([-1,1], [-1,1])7,
y® = 1000 - ([0,1], [0, 1], [0,1], [0,1], [0,1])".

M. Hladik (CUNI) New directions in interval linear programming 17 / 40



Example

Example (cont.)

=N WD oo N

0 1234567 89101112x
@ Only four iterations needed.

@ In grey the largest and the smallest feasible area.

@ The final enclosure of the optimal solution set S is dotted.

4
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Basis stability

Definition

The interval linear programming problem

minc’ x subject to Ax=b, x >0,

is B-stable if B is an optimal basis for each realization.

Theorem

B-stability implies that the optimal value bounds are

f = min QEX subject to Agxg < b, —Agxg < —b, xg >0,
f = max EEX subject to Agxp < b, —Agxg < —b, xg > 0.

Under the unique B-stability, the set of all optimal solutions reads

Apxg < b, —Agxg < —b, xg >0, xy =0.
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Basis stability

Non-interval case

Basis B is optimal iff

Cl. Ag is non-singular;
C2. Ag'b>0;

C3. ¢y — cFAZ Ay > 0T,

Interval case
The problem is B-stable iff C1-C3 holds for each A€ A, be b, c € c.

—

Condition C1

@ C1 says that Ag is regular;
@ NP-hard problem;
o sufficient condition: p (|((Ac)s) *(Aa)s) < 1.
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Basis stability

Non-interval case

Basis B is optimal iff

Cl. Ag is non-singular;
C2. Ag'b>0;

C3. ¢y — cFAZ Ay > 0T,

Interval case
The problem is B-stable iff C1-C3 holds for each A€ A, be b, c € c.

Condition C2

o (2 says that the solution set to Agxg = b lies in R ;

@ sufficient condition: check of some enclosure to Agxg = b.
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Basis stability

Non-interval case
Basis B is optimal iff

Cl. Ag is non-singular;
C2. Ag'b>0;
C3. cff — cgAgtAy > 0T.

Interval case
The problem is B-stable iff C1-C3 holds for each A€ A, be b, c € c.

Condition C3
@ C2 says that A,Cy < cp, AEy = cp is strongly feasible;

@ NP-hard problem;

o sufficient condition:
(Al)y < cp, where y is an enclosure to ALy = c5.
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Basis stability

Condition C3 holds true if and only if for each q € {£1}™ the polyhedral
set described by
((Ac)s — (Aa)é diag(q))y < Ts,
~((Ac)g + (Aa) diag(q))y < —cs,
diag(q)y =0
lies inside the polyhedral set

(AR + (Aa)f diag(q))y < ey, diag(q)y > 0.
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Basis stability

Consider an interval linear program

~[2,3] [7,8] [15, 16]
max ([5,6],[1,2]) " x s.t. < [6,7] —[4,5]) x < ([18,19]) , x> 0.

1 1 [6, 7]

X2 4 @ union of all feasible

41 sets in light gray,

34 @ intersection of all
feasible sets in dark

2 4

gray,

@ set of optimal
solutions in dotted
area

0 1 2 3 4 5 xi

v
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Interval linear programming problems

Open problems

o A sufficient and necessary condition for weak unboundedness, strong
boundedness and weak optimality.

@ A method to check if a given x* € R" is an optimal solution for some

realization.
@ A method for determining the image of the optimal value function.
o A sufficient and necessary condition for duality gap to be zero for
each realization.
@ A method to test if a basis B is optimal for some realization.
@ Tight enclosure to the optimal solution set.
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Applications
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Applications

Applications

o real-life problems affected by uncertainties

@ economics (portfolio selection,. . .)

@ environmental management (water resource and waste mng. planning)
o logistic
9

@ technical tool in constraint programming and global optimization
technical tool in constraint programming and global optimization
@ others

@ interval matrix games
@ interval linear regression interval linear regression
@ measure of sensitivity of linear programs
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Interval linear regression

Linear regression

Consider a linear regression model
XB~y,
Find § solving
min || X3 — .
min I1X5 =yl

|

L,-norm

@ mingerm || XB — y||2 ... least squares
8= (XTX)1XTy,
@ mingerm || XB — y||1 ... least absolute deviations
mine’w subjectto X —y <w, —XB+y<w, w>0.
@ mingerm || X8 — y||s - .. Chebyshev approximation

mint subjectto Xg—y <te, —XB+y<te, t>0,
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Interval linear regression

Interval linear regression

Consider a system of linear regression models
XB~y,

where X € X and y € y.

Reduction to Interval linear programming
@ For Li-norm and L,,-norm, we get an interval linear program.
@ Optimal value range ... minimal/maximal residual value
@ Optimal solution set .. .set of all regression parameters

@ lllustration of basis stability:

@ interpret S5 as a classifier of data (X, y) to two classes below and above
regression line
@ basis stability = the same classification for any realization
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Constraint programming and global optimization

Constraint programming problem

Enclose the set S described by
filxt,...,xp) =0, i=1...,m, (f(x)=0)
gi(x1,...,xs) <0, j=1,...,¢, (g(x) <0)
on a box x.

v

Global optimization problem
Find

min ¢(x)
subject to

f(x)=0, g(x) <0, xex.
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Constraint programming and global optimization

Interval linear programming approach
@ linearize constraints,

@ compute new bounds and iterate.

Example
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Constraint programming and global optimization

Interval linearization

Let x° € x. Suppose that a for some interval matrices A and B we have
f(x) C A(x — x°) + f(x°), Vxex
g(x) € B(x — x%) 4+ g(x°), Vx e x,
e.g. by the mean value form, slopes, ... |
Now, the set S is enclosed by
A(x — x°) + f(x°) =0,
B(x — x%) + g(x°) <o.

What remains to do

@ Solve the interval linear program

@ choose x° € x

A\,
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Constraint programming and global optimization

0.

Case x

is described by

Ax < Ax—f(x), Ax>Ax—f(x),
Bx < Bx—g(x).
@ Similarly if x° is any other vertex of x J
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Constraint programming and global optimization

General case

Let x? € x. The solution set to

A(x — x) + f(x°) =
B(x —x°) +g(x°) <

)

is described by

[Aclx = x0) + FOO)] < Aalx — =],
Bc(x — x°) + g(x°) < Balx —X°|.

@ Non-linear description due to the absolute values.

@ How to get rid of them?
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Constraint programming and global optimization

Example

Typical situation when choosing x° to be vertex:

%0
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Constraint programming and global optimization

Example

Typical situation when choosing x° to be the opposite vertex:
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Constraint programming and global optimization

Example

Typical situation when choosing x° = x.:
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Constraint programming and global optimization

Example

Typical situation when choosing x° = x. (after linearization):
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Constraint programming and global optimization

Example

Typical situation when choosing all of them:
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Conclusion

My apologies for not mentioning

@ duality in interval linear programming
@ linear programming verification
o fuzzy linear programming

@ ...and many others

Challenging problems

@ enclose optimal solution set
@ handle dependencies

@ others (inner enclosures, . ..)
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