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Objectives

Objectives of the presentation

To show that interval linear programming

has important applications

has many nice results

has challenging problems
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Interval linear inequalities

Notation

An interval matrix

A := [A,A] = {A ∈ R
m×n | A ≤ A ≤ A}.

The midpoint and radius matrices

Ac :=
1

2
(A+ A), A∆ :=

1

2
(A− A).

Theorem (Oettli–Prager, 1964)

A vector x ∈ R
n is a solution of Ax = b if and only if

|Acx − bc | ≤ A∆|x |+ b∆.

Theorem (Gerlach, 1981)

A vector x ∈ R
n is a solution of Ax ≤ b if and only if

Acx − bc ≤ A∆|x |+ b∆.
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Interval linear inequalities

Example (An interval polyhedron)
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Interval linear programming

Linear programming

Three basic forms of linear programs

f (A, b, c) ≡ min cT x subject to Ax = b, x ≥ 0,

f (A, b, c) ≡ min cT x subject to Ax ≤ b,

f (A, b, c) ≡ min cT x subject to Ax ≤ b, x ≥ 0.

Interval linear programming

Family of linear programs with A ∈ A, b ∈ b, c ∈ c, in short

f (A,b, c) ≡ min cT x subject to Ax
(≤)
= b, (x ≥ 0).

The three forms are not transformable between each other!

Goals

determine the optimal value range;

determine a tight enclosure to the optimal solution set.
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Complexity of basic problems

Ax = b, x ≥ 0 Ax ≤ b Ax ≤ b, x ≥ 0

strong feasibility co-NP-hard polynomial polynomial

weak feasibility polynomial NP-hard polynomial

strong
unboundedness

co-NP-hard polynomial polynomial

weak
unboundedness

suff. / necessary
conditions only

suff. / necessary
conditions only

polynomial

strong
optimality co-NP-hard co-NP-hard polynomial

weak optimality
suff. / necessary
conditions only

suff. / necessary
conditions only

suff. / necessary
conditions only

optimal value
range

f polynomial
f NP-hard

f NP-hard
f polynomial

polynomial
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Optimal value range
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Optimal value range

Definition

f := min f (A, b, c) subject to A ∈ A, b ∈ b, c ∈ c,

f := max f (A, b, c) subject to A ∈ A, b ∈ b, c ∈ c.

Theorem (Rohn, 2006)

We have for type (Ax = b, x ≥ 0)

f = min cT x subject to Ax ≤ b, Ax ≥ b, x ≥ 0,

f = max
p∈{±1}m

f (Ac − diag(p)A∆, bc + diag(p) b∆, c).

Theorem (Vajda, 1961)

We have for type (Ax ≤ b, x ≥ 0)

f = min cT x subject to Ax ≤ b, x ≥ 0,

f = min cT x subject to Ax ≤ b, x ≥ 0.
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Optimal value range

Algorithm (Optimal value range [f , f ])

1 Compute

f := inf cTc x − cT∆ |x | subject to x ∈ M,

where M is the primal solution set.

2 If f = ∞, then set f := ∞ and stop.

3 Compute

ϕ := sup bTc y + bT∆|y | subject to y ∈ N ,

where N is the dual solution set.

4 If ϕ = ∞, then set f := ∞ and stop.

5 If the primal problem is strongly feasible, then set f := ϕ;
otherwise set f := ∞.
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Optimal solution set
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Optimal solution set

The optimal solution set

Denote by S(A, b, c) the set of optimal solutions to

min cT x subject to Ax = b, x ≥ 0,

Then the optimal solution set is defined

S :=
⋃

A∈A, b∈b, c∈c

S(A, b, c).

Goal

Find a tight enclosure to S.
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Optimal solution set

Characterization

By duality theory, we have that x ∈ S if and only if there is some y ∈ R
m,

A ∈ A, b ∈ b, and c ∈ c such that

Ax = b, x ≥ 0, AT y ≤ c , cT x = bT y ,

where A ∈ A, b ∈ b, c ∈ c.

Relaxation

Relaxing the dependencies

Ax = b, x ≥ 0, AT y ≤ c, cT x = bT y ,

which is described by

Ax ≤ b, −Ax ≤ −b, x ≥ 0,

AT
c y − AT

∆|y | ≤ c , |cTc x − bTc y | ≤ cT∆x + bT∆|y |.
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Linearization of |y |

Properties

The solution set is non-convex in general

It is linear at any orthant

NP-hard to obtain exact bounds

Theorem (Beaumont, 1998)

For every y ∈ y ⊂ R with y < y one has

|y | ≤ αy + β, (1)

where

α =
|y | − |y |

y − y
and β =

y |y | − y |y |

y − y
.

Moreover, if y ≥ 0 or y ≤ 0 then (1) holds as equation.
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Linearization of |y |

Now, the linearization reads

Ax ≤ b, −Ax ≤ −b, x ≥ 0,
(

AT
c − AT

∆ diag(α)
)

y ≤ c + AT
∆β,

cT x +
(

− bTc − bT∆ diag(α)
)

y ≤ bT∆β,

−cT x +
(

bTc − bT∆ diag(α)
)

y ≤ bT∆β,

where

αi :=







|y i |−|y i |

y i−y i
if y i < y i ,

sgn(y i) if y i = y i ,

βi :=







y i |y i |−y i |y i |

y i−y i
if y i < y i ,

0 if y i = y i .
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Contractor

Algorithm (Optimal solution set contractor)

1 Compute an initial interval enclosure x0, y0

2 i := 0;
3 repeat

1 compute the interval hull xi , yi of the linearized system;

2 i := i + 1;

4 until improvement is nonsignificant;

5 return xi ;

Properties

Each iteration requires computing the interval hull
(2(m + n) linear programs).

In practice, it converges quickly, but not to S in general.
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Example

Example

Consider an interval linear program

min−[15, 16]x1 − [17, 18]x2 subject to

x1 ≤ [10, 11],

−x1 + [5, 6]x2 ≤ [25, 26],

[6, 6.5]x1 + [3, 4.5]x2 ≤ [81, 82],

−x1 ≤ −1,

x1 − [10, 12]x2 ≤ −[1, 2].

Take the initial enclosure

x0 = 1000 · ([−1, 1], [−1, 1])T ,

y0 = 1000 · ([0, 1], [0, 1], [0, 1], [0, 1], [0, 1])T .
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Example

Example (cont.)

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

0 x1

x2

Only four iterations needed.

In grey the largest and the smallest feasible area.

The final enclosure of the optimal solution set S is dotted.
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Basis stability

Definition

The interval linear programming problem

min cT x subject to Ax = b, x ≥ 0,

is B-stable if B is an optimal basis for each realization.

Theorem

B-stability implies that the optimal value bounds are

f = min cTB x subject to ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0,

f = max cTB x subject to ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0.

Under the unique B-stability, the set of all optimal solutions reads

ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0, xN = 0.
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Basis stability

Non-interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B

b ≥ 0;

C3. cTN − cTB A−1
B

AN ≥ 0T .

Interval case

The problem is B-stable iff C1–C3 holds for each A ∈ A, b ∈ b, c ∈ c.

Condition C1

C1 says that AB is regular;

NP-hard problem;

sufficient condition: ρ
(

|((Ac )B)
−1|(A∆)B

)

< 1.
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Basis stability

Non-interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B b ≥ 0;

C3. cTN − cTB A−1
B

AN ≥ 0T .

Interval case

The problem is B-stable iff C1–C3 holds for each A ∈ A, b ∈ b, c ∈ c.

Condition C2

C2 says that the solution set to ABxB = b lies in R
n
+;

sufficient condition: check of some enclosure to ABxB = b.
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Basis stability

Non-interval case

Basis B is optimal iff

C1. AB is non-singular;

C2. A−1
B b ≥ 0;

C3. cTN − cTB A−1
B AN ≥ 0T .

Interval case

The problem is B-stable iff C1–C3 holds for each A ∈ A, b ∈ b, c ∈ c.

Condition C3

C2 says that AT
Ny ≤ cN , AT

B y = cB is strongly feasible;

NP-hard problem;

sufficient condition:
(AT

N )y ≤ cN , where y is an enclosure to AT
B y = cB .
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Basis stability

Theorem

Condition C3 holds true if and only if for each q ∈ {±1}m the polyhedral
set described by

((Ac)
T
B − (A∆)

T
B diag(q))y ≤ cB ,

−((Ac)
T
B + (A∆)

T
B diag(q))y ≤ −cB ,

diag(q) y ≥ 0

lies inside the polyhedral set

((Ac)
T
N + (A∆)

T
N diag(q))y ≤ cN , diag(q) y ≥ 0.
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Basis stability

Example

Consider an interval linear program

max ([5, 6], [1, 2])T x s.t.

(

−[2, 3] [7, 8]
[6, 7] −[4, 5]
1 1

)

x ≤

(

[15, 16]
[18, 19]
[6, 7]

)

, x ≥ 0.

1 2 3 4 5

1

2

3

4

0 x1

x2 union of all feasible
sets in light gray,

intersection of all
feasible sets in dark
gray,

set of optimal
solutions in dotted
area
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Interval linear programming problems

Open problems

A sufficient and necessary condition for weak unboundedness, strong
boundedness and weak optimality.

A method to check if a given x∗ ∈ R
n is an optimal solution for some

realization.

A method for determining the image of the optimal value function.

A sufficient and necessary condition for duality gap to be zero for
each realization.

A method to test if a basis B is optimal for some realization.

Tight enclosure to the optimal solution set.
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Applications
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Applications

Applications

real-life problems affected by uncertainties

economics (portfolio selection,. . . )
environmental management (water resource and waste mng. planning)
logistic
. . .

technical tool in constraint programming and global optimization
technical tool in constraint programming and global optimization

others

interval matrix games
interval linear regression interval linear regression
measure of sensitivity of linear programs
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Interval linear regression

Linear regression

Consider a linear regression model

Xβ ≈ y ,

Find β solving

min
β∈Rm

‖Xβ − y‖p.

Lp-norm

minβ∈Rm ‖Xβ − y‖2 . . . least squares

β = (XTX )−1XT y ,

minβ∈Rm ‖Xβ − y‖1 . . . least absolute deviations

min eTw subject to Xβ − y ≤ w , −Xβ + y ≤ w , w ≥ 0.

minβ∈Rm ‖Xβ − y‖∞ . . . Chebyshev approximation

min t subject to Xβ − y ≤ te, −Xβ + y ≤ te, t ≥ 0,

M. Hlad́ık (CUNI) New directions in interval linear programming 28 / 40



Interval linear regression

Interval linear regression

Consider a system of linear regression models

Xβ ≈ y ,

where X ∈ X and y ∈ y.

Reduction to Interval linear programming

For L1-norm and L∞-norm, we get an interval linear program.

Optimal value range . . .minimal/maximal residual value

Optimal solution set . . . set of all regression parameters

Illustration of basis stability:

interpret β as a classifier of data (X , y) to two classes below and above
regression line
basis stability = the same classification for any realization
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Constraint programming and global optimization

Constraint programming problem

Enclose the set S described by

fi (x1, . . . , xn) = 0, i = 1, . . . ,m, ( f (x) = 0 )

gj (x1, . . . , xn) ≤ 0, j = 1, . . . , ℓ, ( g(x) ≤ 0 )

on a box x.

Global optimization problem

Find
minϕ(x)

subject to

f (x) = 0, g(x) ≤ 0, x ∈ x.
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Constraint programming and global optimization

Interval linear programming approach

linearize constraints,

compute new bounds and iterate.

Example

xx

S

x

S

x x′ ⊆ x

S
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Constraint programming and global optimization

Interval linearization

Let x0 ∈ x. Suppose that a for some interval matrices A and B we have

f (x) ⊆ A(x − x0) + f (x0), ∀x ∈ x

g(x) ⊆ B(x − x0) + g(x0), ∀x ∈ x,

e.g. by the mean value form, slopes, . . .

Interval linear programming formulation

Now, the set S is enclosed by

A(x − x0) + f (x0) = 0,

B(x − x0) + g(x0) ≤ 0.

What remains to do

Solve the interval linear program

choose x0 ∈ x
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Constraint programming and global optimization

Case x0 := x

Let x0 := x . Since x − x is non-negative, the solution set to

A(x − x0) + f (x0) = 0,

B(x − x0) + g(x0) ≤ 0,

is described by

Ax ≤ A x − f (x), Ax ≥ Ax − f (x),

Bx ≤ B x − g(x).

Similarly if x0 is any other vertex of x
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Constraint programming and global optimization

General case

Let x0 ∈ x. The solution set to

A(x − x0) + f (x0) = 0,

B(x − x0) + g(x0) ≤ 0,

is described by

|Ac(x − x0) + f (x0)| ≤ A∆|x − x0|,

Bc(x − x0) + g(x0) ≤ B∆|x − x0|.

Non-linear description due to the absolute values.

How to get rid of them?
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Constraint programming and global optimization

Example

Typical situation when choosing x0 to be vertex:

x

x0

S
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Constraint programming and global optimization

Example

Typical situation when choosing x0 to be the opposite vertex:

x

x0

S
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Constraint programming and global optimization

Example

Typical situation when choosing x0 = xc :

x
S

x0
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Constraint programming and global optimization

Example

Typical situation when choosing x0 = xc (after linearization):

x
S

x0
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Constraint programming and global optimization

Example

Typical situation when choosing all of them:

x
S
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Conclusion

My apologies for not mentioning

duality in interval linear programming

linear programming verification

fuzzy linear programming

. . . and many others

Challenging problems

enclose optimal solution set

handle dependencies

others (inner enclosures, . . . )
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