An interval approach to recognition of numerical matrices

Alexander Prolubnikov
Omsk State University

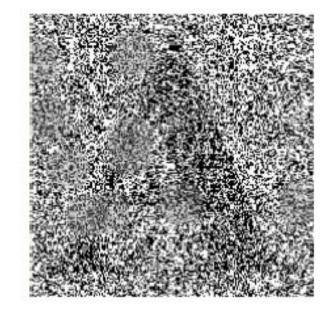
e-mail: a.v.prolubnikov@mail.ru

The statement of the problem

- $\{\mathcal{A}^{(k)}\}_{k=1}^N$ pattern matrices, $a_{ij}^{(k)} \in \mathbb{R}$
- \mathcal{A} is obtained in the process of noising from $\mathcal{A}^{(p)}$ p is unknown
- it's known that matrices elements may be changed in the intervals

$$[a_{ij}^{(k)} - \Delta, a_{ij}^{(k)} + \Delta], \ \Delta > 0$$

We must define p (noised pattern matrix $\mathcal{A}^{(p)}$)



Constructing of heuristics

We associate the input matrices with interval matrices:

$$\{\mathcal{A}^{(k)}\}_{k=1}^N \to \{\boldsymbol{A}^{(k)}\}_{k=1}^N$$

$$m{A}^{(k)} = (m{a}_{ij}^{(k)})$$
:

$$\boldsymbol{a}_{ij}^{(k)} = [\min\{a_{ij}^{(k)}, a_{ij}\}, \max\{a_{ij}^{(k)}, a_{ij}\}],$$

where $a_{ij}^{(k)}$ are elements of pattern matrix $\mathcal{A}^{(k)}$, a_{ij} are elements of recognized matrix \mathcal{A}

Elements of $A^{(k)}$ are intervals,

which characterise changes of elements of pattern matrix $\mathcal{A}^{(k)}$ needed to obtain recognized matrix \mathcal{A}

Constructing of heuristics

Construct the systems of interval linear equations:

$$\mathbf{A}^{(k)}x = b, \ b \in \mathbb{R}^n$$

Suggestion: the lesser the variation of solutions of systems of linear equations, which gives the interval system $\mathbf{A}^{(k)}x = b$, the likely the recognized matrix \mathcal{A} is obtained from $\mathcal{A}^{(k)}$

The variation of solutions of systems of linear equations, which gives $\mathbf{A}^{(k)}x = b$, is measured by

Lebesgue measure of united solution set $\Xi(\mathbf{A}^{(k)}, b)$:

 $\mu(\Xi(\mathbf{A}^{(k)},b))$ is depends on:

- mutual disposition of elements of the matrices.
- It depends continuously on their changes.

The selection of the right-hand side vector of the system

$$\mathbf{A}^{(k)}x = b$$

• the right-hand side vector is a real vector

It gives more precize enclosure of united solution set

because such selection decreases the distance between $\Xi(\mathbf{A}^{(k)}, b)$ and its interval hull $\Box\Xi(\mathbf{A}^{(k)}, b)$

• if $b = e = (1, ..., 1)^{\top}$, then all of the elements of input matrix accounting at equal measure at the process of recognition

Thus, we consider the following systems of interval linear equations:

$$\mathbf{A}^{(k)}x = e$$

Computational complexity of the recognition

$$\Xi^{(k)} \stackrel{def}{=} \Xi(\mathbf{A}^{(k)}, e)$$

The problem of calculating of $\mu(\Xi^{(k)})$ has an exponential complexity $\boldsymbol{X}^{(k)}$ is an approximation of $\Box\Xi^{(k)}$.

$$\boldsymbol{X}^{(k)}$$
 is a box: $\boldsymbol{X}^{(k)} = ([\underline{x}_1^k, \overline{x}_1^k], \dots, [\underline{x}_n^k, \overline{x}_n^k])^{\top}$, such that $\square \Xi^{(k)} \subset \boldsymbol{X}^{(k)}$

$$\mu(\boldsymbol{X}^{(k)}) = (\overline{x}_1^k - \underline{x}_1^k) \cdot \ldots \cdot (\overline{x}_n^k - \underline{x}_n^k)$$

If Encl is some algorithm for enclosing of united solution set, then $C(N, n, Encl) = O(N \cdot C_{Encl}(n))$

If $C_{Encl}(n) = O(n^2)$, then we have an algorithm

with lowest order of complexity

for algorithms of solution of the considered problem.

Modifications of the input matrices

Interval of change:

$$[a_{ij}^{(k)} - \Delta, a_{ij}^{(k)} + \Delta], \ \Delta > 0$$

Modification:

$$a_{ij} := a_{ij} + \upsilon$$

$$a_{ij}^{(k)} := a_{ij}^{(k)} + \upsilon$$

$$(\upsilon > 0)$$

As a result:

decreasing of the ratio:

$$\frac{\Delta}{|a_{ij}^{(k)}|} \to \frac{\Delta}{|a_{ij}^{(k)} + \upsilon|}$$

if the ratio $\Delta/|a_{ij}^{(k)}|$ is small enough then recognition is possible

Modifications of the input matrices

1)
$$\mathbf{A}^{(k)} := \mathbf{A}^{(k)} + v\mathbf{E}, \ \mathbf{E}_{ij} = [1, 1], \ i, j = \overline{1, n}$$

2)
$$\mathbf{A}^{(k)} := \mathbf{A}^{(k)} + \mathbf{D}$$
, \mathbf{D} is diagonal interval matrix

$$\boldsymbol{D}_{ii} = [D, D]$$

$$D^{(k)} = 2 \max_{1 \le i \le n} \sum_{j \ne i} |(\mathbf{A}^{(k)})_{ij}|, \quad D = \max_{1 \le k \le N} D^{(k)}$$

As a result:

 $\mathbf{A}^{(k)}$ are H-matrices

We may use interval Gauss-Seidel method for enclosing $\Box \Xi^{(k)}$

The initial approximation:

box
$$([-B, B], \dots, [-B, B])^{\top}$$
, $B = 1/[v(n-1)]$

The algorithm

Input: $\{A^{(k)}\}_{k=1}^N$ and A.

Output: Index p (matrix $\mathcal{A}^{(p)} \in {\mathcal{A}^{(k)}}_{k=1}^N$)

- **1.** Construct matrices $\{A^{(k)}\}_{k=1}^{N}$.
- **2.** Using Encl calculate $\boldsymbol{X}^{(k)}$, $k = \overline{1, N}$.

 $(\boldsymbol{X}^{(k)} \text{ are enclosures of } \Xi^{(k)})$

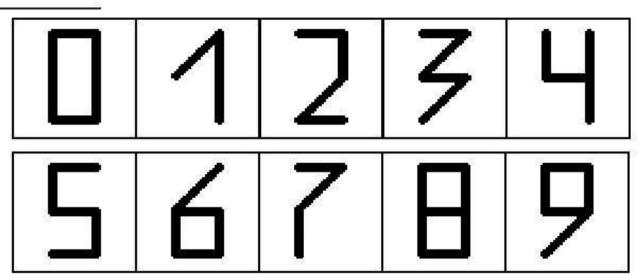
3. Chose p such that $\mu(\boldsymbol{X}^{(p)}) = \min_{1 \leq k \leq N} \mu(\boldsymbol{X}^{(k)}).$ p is a result of recognition

Total computational complexity:

$$Encl = GS,$$

$$C(N, n, GS) = O(N \cdot N_{GS} \cdot n^2)$$

$$20 \times 20$$
, 35×35 ,
 50×50 and 100×100
pixels resolution



$$a_{ij}^{(k)} = \begin{cases} c_1, & \text{if pixel in } ij \text{ position is white,} \\ c_2, & \text{if pixel in } ij \text{ position is black} \end{cases}$$

- black and white images: $c_1 = 0$ and $c_2 = 1$,
- greyscale images: $c_1, c_2 \in [0, 255]$

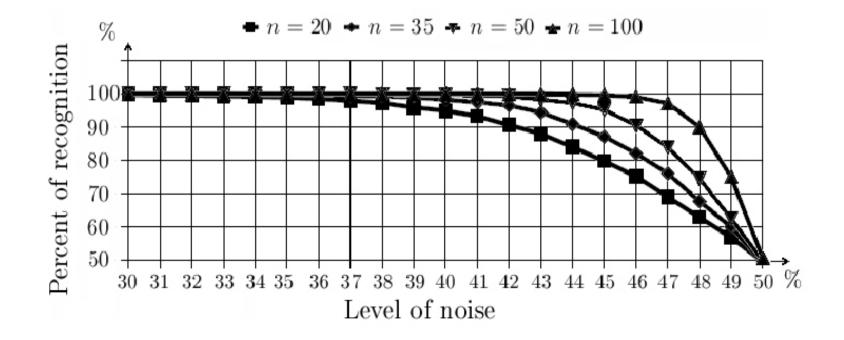
Level of noise $Q \in [0, 100](\%)$

Percent of recognition

$$P = \frac{\text{number of correct recognition}}{\text{number of trials}} \times 100$$

Q	31	32	33	34	35	36	37	38	39	40
n=20	99.57	99.6	99.37	99.19	99	98.56	98	97.27	95.97	94.96
n = 35	99.9	99.97	99.97	99.84	99.83	99.71	99.47	99.36	99.02	98.31
n = 50	100	100	99.99	99.98	99.97	99.99	99.93	99.89	99.82	99.74
n = 100	100	100	100	100	100	100	100	100	100	100
Q	41	42	43	44	45	46	47	48	49	50
n=20	93.32	90.67	88.07	84.1	79.87	75.28	69.16	63.06	57.02	49.72
n = 35	97.52	96.55	94.46	91	87.22	82.18	76.16	67.86	60.13	49.41
n = 50	99.51	99.27	98.36	97.29	95.23	90.6	83.99	74.61	62.69	49.86
n = 100	100	99.98	99.97	99.86	99.68	99.08	97.23	99.08	75.09	50.68

Percent of recognition for level of noise from 31% up to 50%, $c_1 = 0$, $c_2 = 1$



Comparison of recognition efficiency of the presented heuristics with recognition efficiency of minimization of the distance $\rho(\mathcal{A}, \mathcal{A}^{(k)})$

$$\rho(\mathcal{A}, \mathcal{A}^{(k)}) = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} \left(a_{ij} - a_{ij}^{(k)}\right)^2}$$

$$\rho(\mathcal{A}, \mathcal{A}^{(1)}) < \rho(\mathcal{A}, \mathcal{A}^{(2)}),$$

but
$$|a_{ij} - a_{ij}^{(2)}| < |a_{ij} - a_{ij}^{(1)}|$$

for majority of ij positions of this matrices

Comparison of recognition efficiency of the presented heuristics with recognition efficiency of minimization of the distance $\rho(\mathcal{A}, \mathcal{A}^{(k)})$

S is percent of the trials in which presented approach gives a recognition and miminimizing of $\rho(\mathcal{A}, \mathcal{A}^{(k)})$ doesn't give a recognition

S,%	0	5.4	7.4	16.2	23.5
P,%	100	99.93	99.79	99.72	99.81
Δ	10	25	50	75	100

Values of S when level of noise is equal to 44%, $c_1 = 110$, $c_2 = 120$

S, %	22.8	37.5	47.3	46.4	46.4
P,%	99.71	99.6	99.8	99.72	99.82
Δ	10	25	50	75	100

Values of S when level of noise is equal to 44%, $c_1 = 119$, $c_2 = 120$

Conclusions

• an algorithm of recognition of numerical matrices presented

• minimization of Lebesgue measure of united solution sets is the heuristics which the algorithm uses

• the recognition algorithm doesn't have a learning stage and it has a quadratic computational complexity