Limitations of complex interval
Gauss-Seidel iterations
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Example 2. Estimation of thermal transfer function
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Basic objects
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circular interval — complex set <c,r>={x € C: |x-c|<r}, r=0
rad <c,r>=r, mid <c,r>=c

Ax=b — system of linear equations

United solution set: Zmi={x € C" |3 A €A,db €b: Ax=b}



Disadvantages

Sector

» Additional operations during addition\subtraction;
roughening during this operations.

* Problems with solution sets: Beeck’s
characterization is wrong. Z(A,b) # {x|0eAx — b}
Rectangular

 Double set of interval parameters.

* Arithmetic problems. Multiplication is unassociative
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Multiplication problem

[1,2]+[1,2]i x [3,4]+[3,4]i

<1,1> x <-1+j, 1>




Gauss-Seidel algorithm pseudocode

 Oninput: system Ax=b, an enclosure)(forE

uni
a stopping criterion €.
d:= +infty
e DO WHILE (d> )
FORi=1TOn

=x, N(b, — Zal])(] Z a;x;) a;

j=i+l
IF X, = = (JTHEN STOP (No solutions)

END IF
END FOR
d:=dist (x, x)
X=X

END DO



Statement 1

e “Classic” interval Gauss-Seidel method can be
generalized for the complex case with replacement
of real interval operations by complex ones, and
minor corrections in pseudocode.
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Limitations

Theorem 1. Complex Gauss-Seidel iteration method do
not deteriorate outer estimation of solutions set at

any step (but not necessarily converge to optimal
outer estimate).

Real case: if A is not an H-matrix, then there exist
“improvement-resistant” starting estimates of any
width for the system Ax =0.



Complex trace domination

We will call a circular interval n xn matrix circular trace
dominant matrix (CTD-matrix), if, for every non-zero
interval n-vector u with mid (u;) = 0, the condition

Z a;juj| < |a;u;| istrue foreveryi

£

Inflation process: mid v,;=mid u, rad v.=c'rad u, (c>1)



Inflation process

Circular operations:

Multiplication: (a,r) - (b, R) = (ab, |a|R + |b|r + Rr)

. 1
Inversion: = (— T

(@,r)  lal* —r2"|a|? —r?

here is a* complex conjugate element for a

(ab,crR) c {a,r) - (b, cR)
(a,7Yc (bRY= |b—a| <R -7



Complex case limitations

* Theorem 2. If, in the system of equations Ax = 0, the
matrix A is not an CTD-matrix, then there exits a

starting enclosure x of any width that cannot be
improved by Gauss-Seidel iterations use.

* Strong difference: Ju,u # 0,mid(u;) =0,i=1..n

z a[ju} > ﬂ|aiiui|
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Complex case limitations (cont.)

e Statement 2. If the coefficient A is large
enough, then the result can be generalized for
non-zero b

i (Imid(a;;)| + rl-zi) Z )
i=Lt.n | mid2(a;;) — r* Y

Hooj=i

Statement 3. Class of CTD-matrices is empty



Conclusion

e Generalization of interval Gauss-Seidel algorithm for
the complex case is possible.

* Very strong requirement of CTD-matrix is essentially
narrowing the applicability of the Gauss-Seidel
iterations. In fact, the class of CTD-matrices is empty.

* There still exists a certain class of matrices close to
CTD-matrices that the application of the Gauss-Seidel
complex interval method for them produces good
results.
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Thank you for your attention!



