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Tracking Control for Continuous-Time Dynamical
Systems

Consider a dynamical system with

• the state equations ẋ (t) = f (x (t) ,p (t) ,u (t) , t)

• the output y (t) = g (x (t) ,u (t)), for example, measured data h (·)

• the desired output trajectory yd (t)

observer for

state

reconstruction

u (x̂,w) ẋ = f (x, p, u, t) y = h (x, u, q, t)

control law plant sensor characteristics

S

x
w

u

x̂

y
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Necessity for state/ output feedback to prevent the violation of feasibility
constraints in the case of parameter uncertainties as well as measurement and
state reconstruction errors.
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Tracking Control for Differentially Flat Systems

Differential Flatness of Nonlinear Dynamical Systems ẋ (t) = f (x (t) ,u (t))

A dynamical system is called differentially flat, if flat outputs

y = y
(
x,u, u̇, . . . ,u(α)

)
exist such that

(i) all system states x and all inputs u can be expressed as functions of the flat
outputs and their time derivatives:

x = x
(
y, ẏ, . . . ,y(β)

)
and u = u

(
y, ẏ, . . . ,y(β+1)

)
(ii) the flat outputs y are differentially independent, i.e., they are not coupled by

differential equations.

Note:
(a) If (i) is fulfilled, (ii) is equivalent to dim (u) = dim (y).
(b) The flat outputs y need not be the physical outputs of the dynamical system.
(c) For linear systems, differential flatness is equivalent to controllability.
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Generalized Tracking Control for Dynamic Systems

• Guaranteed stabilization of the error dynamics by interval evaluation of suitable
Lyapunov functions to account for uncertainties

• Transformation of the state equations into nonlinear controller normal form:
overcompensation of uncertainties

• Sliding mode control procedures, e.g. evaluated by means of interval analysis:
see previous presentation

• Alternatively: Exploitation of inherent robustness properties of model-predictive
control procedures
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• Guaranteed stabilization of the error dynamics by interval evaluation of suitable
Lyapunov functions to account for uncertainties

• Transformation of the state equations into nonlinear controller normal form:
overcompensation of uncertainties

• Sliding mode control procedures, e.g. evaluated by means of interval analysis:
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control procedures

(Interval-based) Predictive control approaches do not require an analytic refor-
mulation of the state equations into a nonlinear controller normal form or into
an input-affine system representation.



Slide 4/ 29 Andreas Rauh et al. Interval-Based Model-Predictive Control for Uncertain Dynamic Systems with Actuator Constraints

Generalized Tracking Control for Dynamic Systems

• Guaranteed stabilization of the error dynamics by interval evaluation of suitable
Lyapunov functions to account for uncertainties

• Transformation of the state equations into nonlinear controller normal form:
overcompensation of uncertainties

• Sliding mode control procedures, e.g. evaluated by means of interval analysis:
see previous presentation

• Alternatively: Exploitation of inherent robustness properties of model-predictive
control procedures

(Interval-based) Predictive control approaches do not require an analytic refor-
mulation of the state equations into a nonlinear controller normal form or into
an input-affine system representation.

The usage of algorithmic differentiation allows for direct treatment of nonlinear
system models.
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Sensitivity-Based Model-Predictive Control

predicted output y(t)
without correction of u(t)

predicted output y(t)
with correction of u(t)

t

y(t)

tν+Np

yd(t)

tν t

u(t)

∆uν

tν tν+Np

uν−1
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Sensitivity-Based Model-Predictive Control

predicted output y(t)
without correction of u(t)

predicted output y(t)
with correction of u(t)

t

y(t)

tν+Np

yd(t)

tν t

u(t)

∆uν

tν tν+Np

uν−1

• Sensitivity analysis for both analysis and design of control laws

• Consider a finite-dimensional dynamical system ẋ (t) = f (x (t) , ξ) with the
state vector x ∈ Rnx (including observer state variables) and the parameter
vector ξ ∈ Rnξ (including the system parameters p and the control inputs u)

Compute piecewise constant control inputs u (t) for each time interval
t ∈ [tν ; tν+1), 0 ≤ tν < tν+1.
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Sensitivity Analysis of Dynamical Systems

• Sensitivity of the solution x (t) to the set of ordinary differential equations
ẋ (t) = f (x (t) , ξ) with respect to a time-invariant parameter vector ξ

d

dt

(
∂x (t)

∂ξi

)
=
∂f (x (t) , ξ)

∂x
· ∂x (t)

∂ξi
+
∂f (x (t) , ξ)

∂ξi
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Sensitivity Analysis of Dynamical Systems

• Sensitivity of the solution x (t) to the set of ordinary differential equations
ẋ (t) = f (x (t) , ξ) with respect to a time-invariant parameter vector ξ

d

dt

(
∂x (t)

∂ξi

)
=
∂f (x (t) , ξ)

∂x
· ∂x (t)

∂ξi
+
∂f (x (t) , ξ)

∂ξi

• New state vectors (x ∈ Rnx, ξ ∈ Rnξ)

si (t) :=
∂x (t)

∂ξi
∈ Rnx for all i = 1, . . . , nξ

ṡi (t) =
∂f (x (t) , ξ)

∂x
· si (t) +

∂f (x (t) , ξ)

∂ξi
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Sensitivity Analysis of Dynamical Systems

• Sensitivity of the solution x (t) to the set of ordinary differential equations
ẋ (t) = f (x (t) , ξ) with respect to a time-invariant parameter vector ξ

d

dt

(
∂x (t)

∂ξi

)
=
∂f (x (t) , ξ)

∂x
· ∂x (t)

∂ξi
+
∂f (x (t) , ξ)

∂ξi

• New state vectors (x ∈ Rnx, ξ ∈ Rnξ)

si (t) :=
∂x (t)

∂ξi
∈ Rnx for all i = 1, . . . , nξ

ṡi (t) =
∂f (x (t) , ξ)

∂x
· si (t) +

∂f (x (t) , ξ)

∂ξi

• Initial conditions

si (0) =
∂x (0,p)

∂ξi
with si (0) = 0 if x (0) is independent of ξi
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Sensitivity-Based Control Using Algorithmic
Differentiation (1)

• Define the control error

J =

ν+Np∑
µ=ν

D (y (tµ)− yd (tµ))

between the actual and desired system outputs y (t) and yd (t), respectively, to
achieve accurate tracking control behavior

• Define the output y (t) in terms of the state vector x (t) and the control u (t)
(assumed to be piecewise constant for tν ≤ t < tν+1) according to

y (t) = g (x (t) ,u (t))

• Compute the differential sensitivity of J using algorithmic differentiation
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Sensitivity-Based Control Using Algorithmic
Differentiation (2)

• Correct the control input u (tν) according to

u (tν) = u (tν−1) + ∆uν with ∆uν = −
(

∂J

∂∆uν

)+

· J ,

where M+ :=
(
MTM

)−1
MT is the left pseudo-inverse of M

• Compute the differential sensitivity of the error measure J

∂J

∂∆uν
=

ν+Np∑
µ=ν

(
∂D (g (x,u)− yd (tµ))

∂x
· ∂x (tµ)

∂∆uν
+
∂D (g (x,u)− yd (tµ))

∂∆uν

)

with the property
∂x (tν−1)

∂∆uν
= 0

• Evaluate ∂g
∂x and ∂g

∂∆uν
for x = x (tµ) and u = u (tν−1) + ∆uν, ∆uν = 0
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Extensions to Sensitivity-Based Control of
Uncertain Systems — Algorithm

Stage 1:

• Allow for uncertainty in parameters and measurements

• Enclose time discretization errors in the computation of the control input

u (tν) = u (tν−1) + ∆uν with ∆uν = −sup

((
∂ [J ]

∂∆uν

)+

· [J ]

)
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Uncertain Systems — Algorithm
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u (tν) = u (tν−1) + ∆uν with ∆uν = −sup
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)

Stage 2: Check for admissibility of the resulting solution with respect to state
and input constraints
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Extensions to Sensitivity-Based Control of
Uncertain Systems — Algorithm

Stage 1:

• Allow for uncertainty in parameters and measurements

• Enclose time discretization errors in the computation of the control input

u (tν) = u (tν−1) + ∆uν with ∆uν = −sup

((
∂ [J ]

∂∆uν

)+

· [J ]

)

Stage 2: Check for admissibility of the resulting solution with respect to state
and input constraints

Stage 3: Adjust the control input if necessary according to worst-case overshoot

∆yν := max
t∈

[
tν ; t

ν+Ñp

] {0 ; sup ([y (t)]− yd (t))}
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Extensions to Sensitivity-Based Control of
Uncertain Systems — Example (1)

• Control of a double integrating plant

ẋ (t) =

[
0 1
0 0

]
x (t)+

[
0
1
m

]
u (t)+

[
0
Fd

]
with m ∈ [0.9 ; 1.1] , Fd ∈ [−0.1 ; 0.1]

• Definition of the desired output trajectory

yd (t) = x1,d (t) = 1− e−t

with the inconsistent initial state x (0) =
[
−1 0

]T
• Direct computation of a piecewise constant control with a time-invariant

step size tν+1 − tν = 0.01 and N = 200

• Guaranteed admissibility of the solution in spite of bounded measurement errors

x1(t) ∈ x1,m(t) + [−0.01 ; 0.01] x2(t) ∈ x2,m(t) + [−0.01 ; 0.01]
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Extensions to Sensitivity-Based Control of
Uncertain Systems — Example (2)

Result: Grid-based simulation of sensitivity-based approach without guaranteed
overshoot prevention

t in s

y
(t

),
y d

(t
)

0 2 4 6 8 10

−0.5

0.0

0.5

1.0

1.5
yd (t)

−1.0

t in s

u
(t

)

0 2 4 6 8 10
−2

−1

0

1

2

3
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Extensions to Sensitivity-Based Control of
Uncertain Systems — Example (4)

Result: Grid-based validation of sensitivity-based approach with guaranteed
overshoot prevention
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Practical Application Scenario: Temperature
Control for Solid Oxide Fuel Cell Systems (1)

• Control-oriented thermal SOFC model: Semi-discretization into nx = L ·M ·N
finite volume elements

i=1 ,...,L

j=1 ,...,M
k=1,...,N

L ,M ,N

L ,1 ,1

⋮

1,1 ,N

1,M ,11,1 ,1

system
boundary

mass flow

• Introduction of the state vector xT = [ϑ1,1,1, ..., ϑL,M,N ] ∈ Rnx (piecewise
homogeneous temperature values)

• Restriction to the configurations L = M = N = 1 and L = 1, M = 3, N = 1
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Practical Application Scenario: Temperature
Control for Solid Oxide Fuel Cell Systems (2)

• Design of a predictive control procedure such that

– System inputs and operating temperature stay close to the desired set-point
– Large spatial gradients of the temperature distribution are penalized
– Local violations of the maximum admissible cell temperature are prevented

with certainty (in a rigorous formulation)
– Temporal variation rates of the physical system inputs do not violate given

bounds (in a weak formulation)
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Practical Application Scenario: Temperature
Control for Solid Oxide Fuel Cell Systems (2)

• Design of a predictive control procedure such that

– System inputs and operating temperature stay close to the desired set-point
– Large spatial gradients of the temperature distribution are penalized
– Local violations of the maximum admissible cell temperature are prevented

with certainty (in a rigorous formulation)
– Temporal variation rates of the physical system inputs do not violate given

bounds (in a weak formulation)

• Sensitivity-based manipulation of the supplied mass flow of cathode gas as
well as the temperature difference between the preheater and the inlet
gas manifold of the SOFC
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Practical Application Scenario: Temperature
Control for Solid Oxide Fuel Cell Systems (2)

• Design of a predictive control procedure such that

– System inputs and operating temperature stay close to the desired set-point
– Large spatial gradients of the temperature distribution are penalized
– Local violations of the maximum admissible cell temperature are prevented

with certainty (in a rigorous formulation)
– Temporal variation rates of the physical system inputs do not violate given

bounds (in a weak formulation)

• Sensitivity-based manipulation of the supplied mass flow of cathode gas as
well as the temperature difference between the preheater and the inlet
gas manifold of the SOFC

ϑ1,3 ,1ϑ1,2 ,1ϑ1,1 ,1

ṁAG ,in(t) ,ϑAG(t)

ṁCG ,in(t),ϑCG (t)

ṁAG ,out(t),ϑ1,3 ,1(t)

ṁCG ,out(t) ,ϑ1,3 ,1(t)

system boundary
i

j
k
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Interval-Based Predictive Control (1)

Result: Cell temperature for the scalar system model (desired operating
temperature: 850 K, max. admissible temperature 880 K with varying properties of
the anode gas and the electric load)

without overshoot prevention
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Interval-Based Predictive Control (2)

Result: Cell temperature for the scalar system model (desired operating
temperature: 850 K, max. admissible temperature 880 K with varying properties of
the anode gas and the electric load)

mass flow of cathode gas

t in 103 s

ṁ
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Interval-Based Predictive Control (3)

Result: Cell temperature for the system model with nx = 3 states (desired
operating temperature: 850 K, max. admissible temperature 880 K with varying
properties of the anode gas and the electric load)

Undesirable behavior after t = 11, 000 s can be predicted from simulations and
avoided by a suitable supervisory control for the remaining system inputs

without overshoot prevention
ϑ1,1,1, ϑ1,2,1, ϑ1,3,1
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necessity for refined
optimality criterion in

prediction algorithm
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Derivation of a Physically-Motivated Criterion for
the Detection and Reduction of Overestimation (1)

• Prediction of the stack temperatures over the time horizon t ∈
[
tν ; tν+Np

]
with Np > 0 steps and constant sampling time T := tν+1 − tν

=⇒ Overestimation in the state enclosures can make the predictive control
procedure inefficient

• Energy-related criterion for the detection of overestimation

• Variant 1: Direct evaluation of

Eµ := E (tµ) =
∑
i,j,k

ci,j,k ·mi,j,k · ϑi,j,k(tµ)

• Variant 2: Integral formulation (with typically tighter bounds)

Eµ = Eν +

tµ∫
tν

Ė (τ) dτ = Eν +

tµ∫
tν

∑
i,j,k

ci,j,k ·mi,j,k · ϑ̇i,j,k(τ)

 dτ
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Derivation of a Physically-Motivated Criterion for
the Detection and Reduction of Overestimation (2)

• Simplification for state-independent and time-invariant parameters ci,j,k and
mi,j,k which are identical for all finite volume elements

• Modified formulation

– Variant 1: Direct evaluation of

Eµ := E (tµ) =
∑
i,j,k

ϑi,j,k(tµ)

– Variant 2: Integral formulation

Eµ = Eν +

tµ∫
tν

Ė (τ) dτ = Eν +

tµ∫
tν

∑
i,j,k

ϑ̇i,j,k(τ)

 dτ

• Determine the offset Eν ∈ [Eν] on the basis of measured temperatures
(including measurement tolerances and estimation errors)
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Derivation of a Physically-Motivated Criterion for
the Detection and Reduction of Overestimation (3)

• Simplification for state-independent and time-invariant parameters ci,j,k and
mi,j,k which are identical for all finite volume elements

• Modified formulation

– Variant 1: Direct evaluation of

Eµ := E (tµ) =
∑
i,j,k

ϑi,j,k(tµ)

– Variant 2: Integral formulation

Eµ = Eν +

tµ∫
tν

Ė (τ) dτ = Eν +

tµ∫
tν

∑
i,j,k

ϑ̇i,j,k(τ)

 dτ

Reduced overestimation on variant 2 since the heat flow over boundaries between
neighboring finite volume elements cancels out exactly (energy conservation: first
law of thermodynamics!)
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Discrete-Time Formulation of the Predictive
Control Algorithm (1)

• Determine state enclosure for t = tν: ϑi,j,k (tν) ∈ [ϑi,j,k (tν)]

• Discrete-time evaluation of the state equations over the complete prediction
horizon

[
tν ; tν+Np

]
, µ > ν

ϑi,j,k (tµ) ∈ [ϑi,j,k (tµ−1)] + T ·
[
ϑ̇i,j,k (tµ−1)

]
with u = u (tν−1)

• Simultaneous evaluation of the performance criterion

• Evaluation of the corresponding sensitivities by means of algorithmic
differentiation

• Overestimation criteria

Eµ ∈
∑
i,j,k

[ϑi,j,k(tµ)] and Eµ ∈
[
Ẽµ

]
:= [Eν] +

µ∑
µ′=ν

∑
i,j,k

[
ϑ̇i,j,k(t

′
µ)
]



Slide 22/ 29 Andreas Rauh et al. Interval-Based Model-Predictive Control for Uncertain Dynamic Systems with Actuator Constraints

Discrete-Time Formulation of the Predictive
Control Algorithm (2)

• Reduction of the conservativeness with respect to the maximum predicted
temperature for all t ∈

[
tν ; tν+Np

]
by the following consistency test

– Subdivide [ϑi,j,k (tµ)] into subintervals
[
ϑ′i,j,k (tµ)

]
along the longest edge

– Evaluate
E′µ ∈

[
E′µ
]

=
∑
i,j,k

[
ϑ′i,j,k(tµ)

]
for all subintervals of the predicted state enclosure [ϑi,j,k(tµ)]
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Discrete-Time Formulation of the Predictive
Control Algorithm (2)

• Reduction of the conservativeness with respect to the maximum predicted
temperature for all t ∈

[
tν ; tν+Np

]
by the following consistency test

– Subdivide [ϑi,j,k (tµ)] into subintervals
[
ϑ′i,j,k (tµ)

]
along the longest edge

– Evaluate
E′µ ∈

[
E′µ
]

=
∑
i,j,k

[
ϑ′i,j,k(tµ)

]
for all subintervals of the predicted state enclosure [ϑi,j,k(tµ)]

• Classification of the resulting subintervals

– Guaranteed caused by overestimation if
[
E′µ
]
∩
[
Ẽµ

]
= ∅

– Undecided for
[
E′µ
]
∩
[
Ẽµ

]
6= ∅ and

[
E′µ
]
6⊆
[
Ẽµ

]
– Consistent for

[
E′µ
]
⊆
[
Ẽµ

]
, where

[
Ẽµ

]
denotes the result of variant 2
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Discrete-Time Formulation of the Predictive
Control Algorithm (2)

• Reduction of the conservativeness with respect to the maximum predicted
temperature for all t ∈

[
tν ; tν+Np

]
by the following consistency test

– Subdivide [ϑi,j,k (tµ)] into subintervals
[
ϑ′i,j,k (tµ)

]
along the longest edge

– Evaluate
E′µ ∈

[
E′µ
]

=
∑
i,j,k

[
ϑ′i,j,k(tµ)

]
for all subintervals of the predicted state enclosure [ϑi,j,k(tµ)]

• Classification of the resulting subintervals

– Guaranteed caused by overestimation if
[
E′µ
]
∩
[
Ẽµ

]
= ∅

– Undecided for
[
E′µ
]
∩
[
Ẽµ

]
6= ∅ and

[
E′µ
]
6⊆
[
Ẽµ

]
– Consistent for

[
E′µ
]
⊆
[
Ẽµ

]
, where

[
Ẽµ

]
denotes the result of variant 2

• Re-evaluate [J ] for the reduced predicted overshoot
=⇒ Perform the sensitivity-based control update as for the illustrative example
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Interval-Based Predictive Control: Results (cont’d)

Result: Cell temperature for the system model with nx = 3 states (desired
operating temperature: 850 K, max. admissible temperature 880 K with varying
properties of the anode gas and the electric load)
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Controllability Analysis by Backward Evaluation (1)

Backward integration for the offline detection of admissible operating regions for
the cell temperature
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Controllability Analysis by Backward Evaluation (2)

Backward integration for the offline detection of admissible operating regions for
the cell temperature
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Sensitivity-Based State and Parameter
Identification (1)

• General (vector-valued) performance criterion

J =

k∑
i=k−N

D (ŷ(ti)− ym(ti))

• Definition of a quadratic error measure

Dµ = (ŷ(ti)− ym(ti))
T
Pµ (ŷ(ti)− ym(ti))

• Main challenge: Nonlinear dependency on optimization variables with a large
number of measured data points N

• Underlying evaluation of the state equations: Explicit Euler method

x̂(tj) = x̂(tk−N) +

j−1∑
i=k−N

∆T · f(x̂(ti),u(ti))
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Sensitivity-Based State and Parameter
Identification (2)

• Output equation
ŷ (t) = g (x̂ (t) ,u (t)) , ŷ ∈ Rny

• Sensitivity analysis for the gradient-like procedure

∂Jµ
∂x̂ (tk−N)

= 2

k∑
i=k−N

{(
∂x̂ (ti)

∂x̂ (tk−N)

)T
(
∂g (x̂ (ti) ,u (ti))

∂x̂ (ti)

)T
Pµ (ŷ (ti)− ym (ti))

}

• Correction step

∆x̂(tk−N) = −α
(

∂J

∂x̂(tk−N)

)+

· J

with ˆ̃x (tk−N) = x̂ (tk−N) + ∆x̂ (tk−N) and the optional step-size factor α
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Sensitivity-Based State and Parameter
Identification (3)

• Newton-like procedure: Second-order approximation of J

Jµ (x̂ + ∆x̂µ) ≈ Jµ (x̂) +
∂Jµ
∂x

∣∣∣∣
x=x̂

∆x̂µ +
1

2
∆x̂Tµ

∂2Jµ
∂x2

∣∣∣∣
x=x̂

∆x̂µ

• Update rule

∆x̂µ(tk−N) := −
(
∂2Jµ
∂x2

∣∣∣∣
x=x̂

)+
∂Jµ
∂x

∣∣∣∣
x=x̂

A. Rauh, L. Senkel, H. Aschemann: Sensitivity-Based State and Parameter Estimation for Fuel

Cell Systems, Proc. of 7th IFAC Symposium on Robust Control Design, Aalborg, Denmark, 2012.

=⇒ Guaranteed proof of stability by procedure similar to verification of sliding
mode state estimation:

A. Rauh, L. Senkel, H. Aschemann: Interval-Based Sliding-Mode Observer Design for Nonlinear

Systems with Bounded Uncertainties, in preparation for ECC 2013, Zurich, Switzerland.
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Conclusions and Outlook on Future Work

• Framework for sensitivity-based open-loop and closed-loop control with real-life
applications

• Extension of sensitivity-based control to systems with interval uncertainties
=⇒ Guarantee the compliance with state and control constraints

• Development of a general framework for interval arithmetic, sensitivity-based
model-predictive control
=⇒ Problem-dependent definition of corresponding cost functions
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Conclusions and Outlook on Future Work

• Framework for sensitivity-based open-loop and closed-loop control with real-life
applications

• Extension of sensitivity-based control to systems with interval uncertainties
=⇒ Guarantee the compliance with state and control constraints

• Development of a general framework for interval arithmetic, sensitivity-based
model-predictive control
=⇒ Problem-dependent definition of corresponding cost functions

• Extension of sensitivity-based control to state and disturbance estimation
(duality of control and observer synthesis)

• Verification of (asymptotic) stability

• Gain scheduling for sliding mode control with interval uncertainties
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