
Motivation and Interval Regression Models Characteristics of the OLS-solution of IOM Summary

On the OLS set in linear regression with
interval data

Miroslav Rada Michal Černý
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Linear regression model

Consider the classical statistical instrument for testing and estimating
dependencies — linear regression model:

y = Xβ + ε

y – observations of dependent var (say model output) – [n × 1]
X – observations of independent vars (say model input) – [n × p]
β – unknown true regression parameters – [p × 1]
ε – disturbances – [n × 1]

The tuple (X , y) – data of the model
Assumption: β can be estimated by a linear estimator, ie. β̂ = Qy .
In case of

Q = (X TX )−1X T, the estimator is called Ordinary least squares
(OLS) and β̂ := (X TX )−1X Ty is called OLS-solution of classical
linear regression model,
Q = (X TΩ−1X )−1Ω−1X T, where Ω is a positive definite matrix,
the estimator is called Generalized least squares (GLS).
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Linear regression model — example

Consider a model with one input variable and a constant:

X T =

(
1 1 1 1 1 1 1
2 4 10 15 22 26 31

)
yT =

(
3 2 3 5 9 7 10

)

y

x
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Linear regression model — example

OLS-solution of regression parameters consists of finding such hyper-
plane (line), that has the least sum of squares of disturbances:

β̂ = (X TX )−1X Ty

y

x}β̂1

}̂β2
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Interval data in the model

But what when we allow interval data instead of crisp only?
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Interval data in the model

But what when we allow interval data instead of crisp only?

X T =

(
1 1 1 1 1 1 1
2 [3,6] [9,11] 15 [20,23] 26 31

)

yT =
(
[2,4] 2 [2,4] 5 [8,10] 7 [7,11]

)

There can be interval observations of output variable, of input variable
or of both.

y

x
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Interval data in the model

One may compute OLS-solution for somehow chosen crisp values
from the intervals, for example for the values in previous example.
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Interval data in the model

One may compute OLS-solution for somehow chosen crisp values
from the intervals, for example for the values in previous example.

In our presentation:
we focus on the set of all possible OLS-solutions one can
obtain,
then, we will focus on the special case when model input (X ) is
crisp (i.e., only the output y is interval).
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Interval data in the model

One may compute OLS-solution for somehow chosen crisp values
from the intervals, for example for the values in previous example.

In our presentation:
we focus on the set of all possible OLS-solutions one can
obtain,
then, we will focus on the special case when model input (X ) is
crisp (i.e., only the output y is interval).

More formally, the interval regression model (IRM) is the structure
y = Xβ + ε,

where X is an interval n × p matrix [X ,X ] and y is an interval n × 1
vector [y , y ].

The OLS-solution of IRM is the set

{β ∈ Rp : X TXβ = X Ty ,X ∈ X , y ∈ y}.
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Applications for IRM

Interval data in regression analysis can arise
when rounding or representing data as data-types with restricted
precision,
in case of loss of information, for example when categorizing or
censoring data, when discretizing continuous data,
when dealing with unstable data,

in case of unstability of physical "constants", e.g. gravity
acceleration, though often treated as a constant, slightly changes
with position,
in case of changes of the observed variable inside a period (the
day-closing prices of stocks don’t capture their fluctuation during
the day),

in case of expert predictions or forecasts,
in statistics, e.g. interval predictions of one model can act as
input data for another model.
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Ideas for studying IRM

Replacement of (X , y) by (X ,y) brings some uncertainty or loss
of information
Our aim is to quantify such loss of information
The OLS-solution of IRM describes all possible estimates of
classical model as (X , y) ranges over (X ,y).
OLS-solution of IRM can be viewed as "implicit representation" of
the brought uncertainty, should be studied to analyse whether
the uncertainty is "significant" or "serious".

Goal:
We want to find out how the OLS-solution of IRM looks like, to find
some descriptive characteristics of it.
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Negative result — studying IRM is “hard”

The definition

{β ∈ Rp : X TXβ = X Ty ,X ∈ X , y ∈ y}.

of the OLS-solution of IRM doesn’t testify how it looks like. So, one
may be familiar with constructing interval enclosure for that set.
Unfortunately, it is not easy task, as follows from the following
theorem:

Theorem
It is NP-hard to decide whether the OLS-solution of IRM is a bounded
set.

Hence, the construction of interval enclosure, neither tighter nor less
tight, is very hard problem in general.

Furthermore, the OLS-solution of IRM need not be a convex set.
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Positive result — special cases can be handled easier

In the rest of the presentation, we will focus on the special case of
IRM: the crisp input-interval output model.

Definition

Let X ∈ Rn×p, y ∈ IRn and let Q be defined as Q := (X TX )−1X T.
The tuple (X ,y) denotes the (data of) interval-output (linear
regression) model (henceforth shortly IOM).
The set {β ∈ Rp : β = Qy ; y ≤ y ≤ y ; } is called OLS-solution of IOM.

The OLS-solution of IOM is clearly bounded and convex, and thus
computationaly easier to handle.

The interval data y describes a box in dimension n.
The box is then linearly projected to parameter space Rp.
Observe that the image must be bounded and convex. In fact, it’s a
zonotope, well-known type of polytope.
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Possible characteristics of OLS-solution of IOM

Knowing that the OLS-solution of IOM is a polytope, we can describe
it using characteristics common for polytopes, and possibly use
known algorithms for obtaining such characteristics. The
characteristics are:

1 interval enclosure – extremal values for individual regression
parameters,

2 ellipsoidial approximations – replacement of a combinatorially
complex polytope by a simple set, an ellipsoid (sometimes
referred to as “rounding of polytopes”),

3 volume – natural measure of uncertainty brought to the model by
replacement crisp data by interval data,

4 list of vertices – extremal values for all parameters together and
5 list of facets.

Furthermore, the OLS-solution is a zonotope, a polytope with special
properties, that can be utilized for developing more efficient
algorithms than algorithms for general polytopes.
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Zonotope as an image of a hypercube

Definition
Zonotope is an image of high-dimensional box in a lower (or equal)
dimension under a linear projection y 7→ Py .

In fact, we use P := Q = (X TX )−1X T.

y1 = [1, 6]

y2 = [2, 6]y 3
=

[0,
5]

y 7→ Py : β = Qy

g2 := Q:,2(y2 − y
2
)

g1 := Q:,1(y1 − y
1
)

g3 := Q:,3(y3 − y
3
)

X =

1 1
1 3
1 5

 y =

[1, 6]
[2, 6]
[0, 5]

 Q =

(
−13/12 1/4 −5/12
−1/4 0 1/4

)
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Zonotope as a Minkowski sum

Minkowski sum of set A ⊂ Rp and vector b ∈ Rp is the operation
A+̇b defined as A+̇b := {a + αb : a ∈ A,0 ≤ α ≤ 1}.
Lemma
A) Every zonotope Z ⊂ Rp can be expressed as a Minkowski sum of
a shift s ∈ Rp and a set of vectors (called generators) g1, . . . ,gn ∈ Rp.
B) Given an IOM with data (X ,y), the OLS-solution for that IOM is a
zonotope with shift s := Q(y

1
+ · · ·+ y

n
) and generators

g1 := Q:,1(y1 − y
1
), . . . ,gn := Q:,n(yn − y

n
).

Z3

g3

g1

g2

Z2

g4

Z4

g5

Z5
s
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Interval enclosure

From now on we will use terms OLS-solution of an IOM and zonotope
in the same sense.
Standard representation of a zonotope will be the (n + 1)-tuple
(s,g1, . . . ,gn) and will be called generator description.

The interval enclosure of a zonotope can be constructed easily for
example by evaluation of (X TX )−1X Ty using the interval arithmetic.
Unfortunately, such enclosure can be very redundant if the zonotope
is “noodle-like” in some direction.

Hence, it is reasonable to seek for better enclosures, such as
ellipsoidal approximations.



Motivation and Interval Regression Models Characteristics of the OLS-solution of IOM Summary

Ellipsoidal approximation in general

Let E ∈ Rp×p be a positive definite matrix and s ∈ Rp be a center
point. The symbol E(E , s) stands for the ellipsoid

{x ∈ Rp : (x − s)TE−1(x − s) ≤ 1}.

Goffin’s algorithm is an algorithm (based on the Shallow Cut Ellipsoid
Method) which, for every fixed ε > 0, finds in poly-time an ellipsoidal
approximation of a given convex polytope P, represented as an
inequality Ax ≤ b, such that

E(p−2E , s) ⊆ P ⊆ E(E(1 + ε), s).

Observe that approximation is up to the tolerance ε the best possible:
the regular 2-simplex serves as example:

s

2r
r where E =

(
4r2 0
0 4r2

)
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Ellipsoidal approximation of a zonotope

We adapted Goffin’s algorithm for zonotopes given by generator
descriptions, achieving the same tightness of approximation. Hence,
we can state the following theorem:

Theorem
Let ε > 0 be fixed. Given a zonotope Z represented by generator
description, there exists a polynomial time algorithm that finds a
matrix E and shift s such that

E(p−2E , s) ⊆ Z ⊆ E(E(1 + ε), s).

Remark: For a centrally symmetric set Z , Jordan’s theorem assures existence of
approximation in form E(p−1E , s) ⊆ Z ⊆ E(E(1 + ε), s), which theoretically allows
better tightness of approximation than we achieved. On the other hand, we couldn’t
process a crucial step of the algorithm, testing whether polytope contains a ball, in
polynomial time, hence we lost the factor p again, achieving the same tightness as the
original Goffin’s algorithm.
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Volume computation

volume of a zonotope is a natural measure of uncertainty brought
to a regression model by interval data
#P-hard problem (Dyer et. al. (1998))
given a generator description of a zonotope, volume computation
consists in computing

(n
p

)
determinants

vol(Z ) =
∑

1≤i1<···<ip≤n

∣∣det
(
gi1 , . . . ,gip

)∣∣

formula is based on the fact that zonotope can be decomposed
into parallelotopes
we proposed an algorithm called RRR (details are omitted)
which computes exact volume in time O(

(m−1
d−1

)
(md + d3)), doing

some computations simultaneously
there is randomized polynomial algorithm by Dyer et. al. (1998):
given relative error bound and a probability for attaining this
bound, it computes the volume up to the given bound with the
given probability
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Vertex and facet enumeration

problem is in the possible size of output (f0 – number of vertices,
fp−1 – number of facets):

f0 ≤ 2
∑p−1

i=0

(
n − 1

i

)
, fp−1 ≤ 2

(
n

p − 1

)
.

Moreover, these bounds are attained for some zonotopes (which
can also be OLS-solutions of IOMs).
Hence, the number of vertices and facets of a zonotope may be
superpolynomial in dimension and number of generators.
For such problems, algorithms with following properties may be
useful:

compactness – space complexity polynomial in the input size
output-polynomiality – time complexity polynomial in the output size



Motivation and Interval Regression Models Characteristics of the OLS-solution of IOM Summary

Vertex and facet enumeration

Our RRR algorithm can be (besides the volume computation)
used for enumeration of facets and vertices with minimal added
effort.
However, it is neither compact nor output-polynomial.
For vertex enumeration, the idea behind RRR can be modified to
obtain compact and output-polynomial algorithm.
Another algorithm with such propertites (Fukuda, Avis (1993)) is
known, as well as an asymptotically optimal (noncompact)
algorithm by Edelsbrunner and O’Rourke (1986).
For facet enumeration, there is (noncompact) output-polynomial
algorithm by Seymour (1994).
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Summary

We dealt with linear regression model with interval data and
discussed the properties of the set of all OLS-solutions.
We showed that for general model with interval input and output
“everything is computationally hard”.
For the special case of crisp input-interval output the set of all
OLS-solutions is a zonotope — a polytope with special structure.
For zonotope, we can compute interval enclosure, ellipsoidal
approximation and volume approximation in polynomial time.
Exact volume computation, vertex enumeration and facet
enumeration can’t be accomplished in polynomial time, although
there exists “efficient” algorithms for these problems.

Thank you for attention!
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