Solving the Table Maker's Dilemma by reducing divergence on GPU

Pierre Fortin, Mourad Gouicem, Stef Graillat

PEQUAN Team, LIP6/UPMC

SCAN 2012, Novosibirsk, Russia September 27th 2012

The IEEE 754-2008 standard

Aim

Ensure predictable and portable numerical software.

Basic Formats

- single-precision (binary32)
- double-precision (binary64)
- quadruple-precision (binary128)

Rounding Modes

- Rounding to nearest
- Directed rounding (towards 0, $-\infty$ and $+\infty)$

Correctly rounded operations

 $+,-,\times,/,\sqrt{}$

And for elementary mathematical functions? exp, log, sin, cos, tan, \cdots \Rightarrow IEEE-754-2008 only recommends correct rounding because of the Table Maker's Dilemma

Correct rounding

$$\circ_p(f(x)_{\varepsilon}) = \circ_p(f(x)_0)$$

Given a function f defined over I and a rounding mode $\circ_p,$ find ϵ such that $\forall x \in I$

$$\circ_p(f(x)_{\epsilon}-\epsilon)=\circ_p(f(x)_{\epsilon}+\epsilon).$$

General Framework

 Split the domain and approximate the function on each sub-domain with error ε.

General Framework

- Split the domain and approximate the function on each sub-domain with error ε.
- 2 Search hard-to-round cases.

General Framework

- Split the domain and approximate the function on each sub-domain with error ε.
- 2 Search hard-to-round cases.
- **③** Find the hardness-to-round ϵ of f among the HR-cases.

Problem

- HR-cases search is very computationally intensive.
 - \Rightarrow Several years of computation on CPU.
- Time complexity is exponential in the number of bits of the targeted format.

Good news

- We focus on fixed size intances namely 64, 80 and 128-bit formats.
- We can search for HR-cases in each sub-domain independently.
 - \Rightarrow Embarrassingly parallel problem.

Data parallelism implemented in almost all hardware :

- Intel X5650 CPU : 6 SIMD cores (SSE intructions : 4x32-bit data)
- NVIDIA C2070 GPU : 14 SIMD cores (32x32-bit data)

Data parallelism implemented in almost all hardware :

- Intel X5650 CPU : 6 SIMD cores (SSE intructions : 4x32-bit data)
- NVIDIA C2070 GPU : 14 SIMD cores (32x32-bit data)

CUDA

Language designed for NVIDIA GPU.

Data parallelism implemented in almost all hardware :

- Intel X5650 CPU : 6 SIMD cores (SSE intructions : 4x32-bit data)
- NVIDIA C2070 GPU : 14 SIMD cores (32x32-bit data)

CUDA

- Language designed for NVIDIA GPU.
- Threads are grouped by *warps* and executed on SIMD Units.
 ⇒ The threads of a warp must execute the same instructions at the same time.

Data parallelism implemented in almost all hardware :

- Intel X5650 CPU : 6 SIMD cores (SSE intructions : 4x32-bit data)
- NVIDIA C2070 GPU : 14 SIMD cores (32x32-bit data)

CUDA

- Language designed for NVIDIA GPU.
- Threads are grouped by *warps* and executed on SIMD Units.
 ⇒ The threads of a warp must execute the same instructions at the same time.
- If the treads of a warp do not follow the same execution path (conditionals and loops), they *diverge*.
 - \Rightarrow Their executions are serialized.

Problem

Given
$$|P(x) - f(x)| < \varepsilon$$
 with $P \in \mathbb{R}[x]$
Find $x \in \mathbb{N}$, if it exists, such that :
$$\begin{cases} x < N \\ |P(x) \mod d| < \varepsilon \\ \text{with } (d, \varepsilon, N) \in \mathbb{N}^3. \end{cases}$$

Problem

Given
$$|P(x) - f(x)| < \varepsilon$$
 with $P \in \mathbb{R}[x]$
Find $x \in \mathbb{N}$, if it exists, such that :
$$\begin{cases} x < N \\ P(x) + \varepsilon \mod d < 2\varepsilon \\ \text{with } (d, \varepsilon, N) \in \mathbb{N}^3. \end{cases}$$

Problem

Given
$$|P(x) - f(x)| < \varepsilon$$
 with $P \in \mathbb{R}[x]$
Find $x \in \mathbb{N}$, if it exists, such that :
$$\begin{cases} x < N \\ b - a \cdot x \mod d < 2\varepsilon \\ \text{with } (d, \varepsilon, N) \in \mathbb{N}^3. \end{cases}$$

Strategy

- Place $a \cdot x$ modulo d.
- Test if there are points at distance 2ε at the left of b.

Position of the $a \cdot x \mod d$ on [0, d[

Going from a 2-length configuration to the next

 $(h, l) \rightarrow (h - l, l)$, with l < h. \Rightarrow Similar to the Euclidean algorithm for computing continued fraction. \Rightarrow In fact, this is the continued fraction of d/a. [Slater 67].

Continued Fraction Expansion

$$rac{d_0}{a_0} = q_0 + rac{d_1}{a_1} = q_0 + rac{1}{q_1 + rac{a_2}{d_2}} = \cdots$$

At each step alternatively,

•
$$d_{2i} = q_{2i} \cdot a_{2i} + d_{2i+1};$$
 $a_{2i+1} = a_{2i}$

•
$$a_{2i+1} = q_{2i+1} \cdot d_{2i+1} + a_{2i+2}$$
; $d_{2i+2} = d_{2i+1}$

Objective

Compute iteratively b_i , the distance from b to the closest point "to its left" at step i.

4 cases

- *b* is in an interval of length a_i and we reduce d_i ,
- 2 *b* is in an interval of length d_i and we reduce a_i ,
- *b* is in an interval of length d_i and we reduce d_i ,
- *b* is in an interval of length a_i and we reduce a_i .

Objective

Compute iteratively b_i , the distance from b to the closest point "to its left" at step i.

4 cases

- *b* is in an interval of length a_i and we reduce d_i , \Rightarrow Nothing to do
- *b* is in an interval of length d_i and we reduce a_i , \Rightarrow Nothing to do
- *b* is in an interval of length d_i and we reduce d_i ,

• *b* is in an interval of length a_i and we reduce a_i .

a = 11; d = 45; b = 30

a = 11; a = 45; b = 30

a = 11; a = 45; b = 30

a = 11; a = 45; b = 30

a = 11; d = 45; b = 30

b reduction rule

$$b_{i+1} = b_i \mod a_{i+1}$$

4 cases

- *b* is in an interval of length *a_i* and we reduce *d_i*,
 ⇒ Nothing to do
- *b* is in an interval of length *d_i* and we reduce *a_i*,
 ⇒ Nothing to do
- *b* is in an interval of length *d_i* and we reduce *d_i*,
 ⇒ Reduction "from the left" : *b_{i+1}* = *b_i* mod *a_{i+1}*
- *b* is in an interval of length a_i and we reduce a_i .

$a = 34; \ d = 45; \ b = 30$

$a = 34; \ d = 45; \ b = 30$

$a = 34; \ d = 45; \ b = 30$

a = 34; d = 45; b = 30

b reduction rule

$$b_{i+1} = (b_i - a_{i+1}) \mod d_{i+1}$$

4 cases

- *b* is in an interval of length *a_i* and we reduce *d_i*,
 ⇒ Nothing to do
- *b* is in an interval of length *d_i* and we reduce *a_i*,
 ⇒ Nothing to do
- *b* is in an interval of length *d_i* and we reduce *d_i*,
 ⇒ Reduction "from the left" : *b_{i+1}* = *b_i* mod *a_{i+1}*
- *b* is in an interval of length *a_i* and we reduce *a_i*.
 ⇒ Reduction "from the right" : *b_{i+1}* = (*b_i* − *a_{i+1}*) mod *d_{i+1}*

Lefèvre algorithm

Update the distance from b to the closest point "to its left" as soon as we add a point to the left of b.

- \Rightarrow Condition the reduction of d_i and a_i by the location of b.
- \Rightarrow From division-based to subtraction-based Euclidian algorithm when splitting the interval containing *b*.

New algorithm

Update the distance from b to the closest point "to its left" at each step of the continued fraction expansion.

Lefèvre algorithm

input : P(x) = ax + b, ε , N $x \leftarrow \{a\}; \quad y \leftarrow 1 - \{a\}; \quad z \leftarrow \{b\};$ initialisation : $u \leftarrow 1; \quad v \leftarrow 1;$ if $z < \varepsilon$ then return Fail: while True do if z < x then $a \leftarrow |x/v|$: /* b is in a; */ /* reduction of d: */ $v \leftarrow v - q \times x$: $u \leftarrow u + q \times v;$ if u + v > N then return Success; /* reduction of a; by one d; */ $x \leftarrow x - y; v \leftarrow u + v;$ else $z \leftarrow z - x$: /* b changed from a; to d; */ if $z < \varepsilon$ then return Fail: /* update distance to b */ $q \leftarrow |y/x|$; /* reduction of a; */ $x \leftarrow x - q \times v$: $v \leftarrow v + a \times u$: if u + v > N then return Success; $v \leftarrow v - x : u \leftarrow u + v$: /* reduction of a; by one d; */

17/22

New algorithm

input : P(x) = ax + b, ε , N $x \leftarrow \{a\}; y \leftarrow 1; z \leftarrow \{b\};$ initialisation : $u \leftarrow 0; \quad v \leftarrow 1;$ if $z < \varepsilon$ then return Fail: while True do if x < y then q = y/x;/* reduction of a; */ y = y - q * xu = u + q * v;/* update distance to b */ $z = z \mod x$: else q = x/y;/* reduction of d; */ x = x - q * y;v = v + q * u;if z > x then z = z - x: /* update distance to b */ $z = z \mod y$ if u + v > N then return $z > \varepsilon$;

Divergence within the main loop

A deterministic test

 a_i and d_i are reduced alternatively

 \Rightarrow we can avoid divergence by unrolling 2 loop iterations.

New algorithm unrolled

```
input : P(x) = ax + b, \varepsilon, N
                    \begin{array}{ll} x \leftarrow \{a\}; & y \leftarrow 1; & z \leftarrow \{b\}; \\ u \leftarrow 0; & v \leftarrow 1; \end{array}
initialisation :
while True do
       /* reduction of y
       q = y/x;
       y = y - q * x;
       u = u + q * v;
       z = z \mod x:
       if u + v \ge N then return z > \varepsilon;
       /* reduction of x
       q = x/y;
       x = x - q * y;
       v = v + q * u;
       if z \ge x then
              z = z - x;
              z = z \mod y;
       if u + v > N then return z > \varepsilon:
```

*/

*/

Divergence on the main loop (*exp*, interval $[1, 1 + 2^{-13}]$)

Normalized mean deviation to the maximum (NMDM)

$$- - rac{Mean(\{n_i, 0 \leq i < w\})}{Max(\{n_i, 0 \leq i < w\})}$$

Divergence on the main loop (*exp*, interval $[1, 1 + 2^{-13}]$)

Normalized mean deviation to the maximum (NMDM)

$$1 - rac{Mean(\{n_i, 0 \leq i < w\})}{Max(\{n_i, 0 \leq i < w\})}$$

Divergence on the main loop (exp, interval $[1, 1 + 2^{-13}]$)

Normalized mean deviation to the maximum (NMDM)

$$1 - rac{Mean(\{n_i, 0 \le i < w\})}{Max(\{n_i, 0 \le i < w\})}$$

 \Rightarrow Lefèvre algorithm goes from division-based to subtraction-based Euclidian algorithm when splitting interval containing *b*. Times in seconds for HR-case search in [1; 2] $(2^{53} doubles, \varepsilon = 2^{-96})$

	CPU (X5650) No SIMD	GPU(C2070)	Speedup
Lefèvre algorithm	36816.10	2446.87	x15.0
New algorithm	34039.94	705.89	x48.2
Speedup	x1.08	x3.5	

Total speedup

Lefèvre on a CPU core \rightarrow New algorithm on GPU : x52.2 . Lefèvre on a hex-core CPU \rightarrow New algorithm on GPU : x7.5 .

Conclusion and perspectives

Conclusion

• Implementation and algorithmic solutions to minimize :

- loop divergence,
- conditional divergence.
- Substancial speedups thanks to a more regular control flow.

Perspectives

- If the targeted function is not well approximated by a degree one polynomial
 - \Rightarrow Too many HR-cases!
 - \Rightarrow Exhaustive search of hardness-to-round becomes huge !
- Solution : using higher degree approximations
 ⇒ SLZ algorithm, based on the LLL algorithm.
- Harness SIMD units on other hardware (SSE/AVX CPUs, Intel MIC, ...) with OpenCL, ISPC...