Solving the Table Maker's Dilemma by reducing divergence on GPU

Pierre Fortin, Mourad Gouicem, Stef Graillat

PEQUAN Team, LIP6/UPMC
SCAN 2012, Novosibirsk, Russia September $27^{\text {th }} 2012$

The IEEE 754-2008 standard

Aim

Ensure predictable and portable numerical software.

Basic Formats

- single-precision (binary32)
- double-precision (binary64)
- quadruple-precision (binary128)

Rounding Modes

- Rounding to nearest
- Directed rounding (towards $0,-\infty$ and $+\infty$)

Correctly rounded operations
$+,-, \times, /, \sqrt{ }$

The IEEE 754-2008 standard

And for elementary mathematical functions? exp, log, sin, cos, tan, \cdots
\Rightarrow IEEE-754-2008 only recommends correct rounding because of the Table Maker's Dilemma

Correct rounding

$$
\circ_{p}\left(f(x)_{\varepsilon}\right)=\circ_{p}\left(f(x)_{0}\right)
$$

Hard-to-round case

Midpoints

The Table Maker's Dilemma

The Table Maker's Dilemma

Given a function f defined over I and a rounding mode \circ_{p}, find ϵ such that $\forall x \in I$

$$
\circ_{p}\left(f(x)_{\epsilon}-\epsilon\right)=\circ_{p}\left(f(x)_{\epsilon}+\epsilon\right) .
$$

General Framework

(1) Split the domain and approximate the function on each sub-domain with error ε.

General Framework

(1) Split the domain and approximate the function on each sub-domain with error ε.
(2) Search hard-to-round cases.

The Table Maker's Dilemma

General Framework

(1) Split the domain and approximate the function on each sub-domain with error ε.
(2) Search hard-to-round cases.
(3) Find the hardness-to-round ϵ of f among the HR-cases.

High Performance Computing

Problem

- HR-cases search is very computationally intensive. \Rightarrow Several years of computation on CPU.
- Time complexity is exponential in the number of bits of the targeted format.

Good news

- We focus on fixed size intances namely 64,80 and 128 -bit formats.
- We can search for HR-cases in each sub-domain independently.
\Rightarrow Embarrassingly parallel problem.

High Performance Computing

Single Instruction Multiple Data (SIMD)

Data parallelism implemented in almost all hardware :

- Intel X5650 CPU : 6 SIMD cores (SSE intructions : 4x32-bit data)
- NVIDIA C2070 GPU : 14 SIMD cores (32x32-bit data)

High Performance Computing

Single Instruction Multiple Data (SIMD)

Data parallelism implemented in almost all hardware :

- Intel X5650 CPU : 6 SIMD cores (SSE intructions : 4x32-bit data)
- NVIDIA C2070 GPU : 14 SIMD cores (32x32-bit data)

CUDA

- Language designed for NVIDIA GPU.

High Performance Computing

Single Instruction Multiple Data (SIMD)

Data parallelism implemented in almost all hardware :

- Intel X5650 CPU : 6 SIMD cores (SSE intructions : 4x32-bit data)
- NVIDIA C2070 GPU : 14 SIMD cores (32x32-bit data)

CUDA

- Language designed for NVIDIA GPU.
- Threads are grouped by warps and executed on SIMD Units. \Rightarrow The threads of a warp must execute the same instructions at the same time.

High Performance Computing

Single Instruction Multiple Data (SIMD)

Data parallelism implemented in almost all hardware :

- Intel X5650 CPU : 6 SIMD cores (SSE intructions : 4x32-bit data)
- NVIDIA C2070 GPU : 14 SIMD cores (32x32-bit data)

CUDA

- Language designed for NVIDIA GPU.
- Threads are grouped by warps and executed on SIMD Units. \Rightarrow The threads of a warp must execute the same instructions at the same time.
- If the treads of a warp do not follow the same execution path (conditionals and loops), they diverge. \Rightarrow Their executions are serialized.

Problem

Given $|P(x)-f(x)|<\varepsilon$ with $P \in \mathbb{R}[x]$
Find $x \in \mathbb{N}$, if it exists, such that :

$$
\begin{aligned}
& \left\{\begin{array}{l}
x<N \\
|P(x) \operatorname{cmod} d|<\varepsilon
\end{array}\right. \\
& \text { with }(d, \varepsilon, N) \in \mathbb{N}^{3} .
\end{aligned}
$$

Problem

Given $|P(x)-f(x)|<\varepsilon$ with $P \in \mathbb{R}[x]$
Find $x \in \mathbb{N}$, if it exists, such that :

$$
\begin{aligned}
& \left\{\begin{array}{l}
x<N \\
P(x)+\varepsilon \bmod d<2 \varepsilon
\end{array}\right. \\
& \text { with }(d, \varepsilon, N) \in \mathbb{N}^{3}
\end{aligned}
$$

Problem

Given $|P(x)-f(x)|<\varepsilon$ with $P \in \mathbb{R}[x]$
Find $x \in \mathbb{N}$, if it exists, such that :

$$
\begin{aligned}
& \left\{\begin{array}{l}
x<N \\
b-a \cdot x \bmod d<2 \varepsilon
\end{array}\right. \\
& \text { with }(d, \varepsilon, N) \in \mathbb{N}^{3} .
\end{aligned}
$$

Strategy

- Place $a \cdot x$ modulo d.
- Test if there are points at distance 2ε at the left of b.

Position of the $a \cdot x$ mod d on $[0, d[$

Three distance theorem [Slater 50]

The points $\{a \cdot x \bmod d \mid x<N\}$ split the segment $[0, d[$ into $n+1$ segments. Their lengths take at most three different values, one being the sum of the two others.

Example : $a=17, d=45$

Position of the $a \cdot x$ mod d on $[0, d[$

Three distance theorem [Slater 50]

The points $\{a \cdot x \bmod d \mid x<N\}$ split the segment $[0, d[$ into $n+1$ segments. Their lengths take at most three different values, one being the sum of the two others.

Example : $a=17, d=45$

- : 2-length configurations

Position of the $a \cdot x$ mod d on $[0, d[$

Three distance theorem [Slater 50]

The points $\{a \cdot x \bmod d \mid x<N\}$ split the segment $[0, d[$ into $n+1$ segments. Their lengths take at most three different values, one being the sum of the two others.

Example : $a=17, d=45$

- : 2-length configurations

Position of the $a \cdot x$ mod d on $[0, d[$

Three distance theorem [Slater 50]

The points $\{a \cdot x \bmod d \mid x<N\}$ split the segment $[0, d[$ into $n+1$ segments. Their lengths take at most three different values, one being the sum of the two others.

Example : $a=17, d=45$

- 2-length configurations

Position of the $a \cdot x$ mod d on $[0, d[$

Three distance theorem [Slater 50]

The points $\{a \cdot x \bmod d \mid x<N\}$ split the segment $[0, d[$ into $n+1$ segments. Their lengths take at most three different values, one being the sum of the two others.

Example : $a=17, d=45$

- 2-length configurations

Position of the $a \cdot x \bmod d$ on $[0, d[$

Going from a 2-length configuration to the next

$$
(h, I) \rightarrow(h-I, I), \text { with } I<h .
$$

\Rightarrow Similar to the Euclidean algorithm for computing continued fraction.
$\Rightarrow \ln$ fact, this is the continued fraction of d / a. [Slater 67].

Continued Fraction Expansion

$$
\frac{d_{0}}{a_{0}}=q_{0}+\frac{d_{1}}{a_{1}}=q_{0}+\frac{1}{q_{1}+\frac{a_{2}}{d_{2}}}=\cdots
$$

At each step alternatively,

- $d_{2 i}=q_{2 i} \cdot a_{2 i}+d_{2 i+1} ; \quad a_{2 i+1}=a_{2 i}$
- $a_{2 i+1}=q_{2 i+1} \cdot d_{2 i+1}+a_{2 i+2} ; \quad d_{2 i+2}=d_{2 i+1}$

Computing a lower bound on $b-a \cdot x \bmod d$

Objective

Compute iteratively b_{i}, the distance from b to the closest point "to its left" at step i.

4 cases

(1) b is in an interval of length a_{i} and we reduce d_{i},
(2) b is in an interval of length d_{i} and we reduce a_{i},
(3) b is in an interval of length d_{i} and we reduce d_{i},
(9) b is in an interval of length a_{i} and we reduce a_{i}.

Computing a lower bound on $b-a \cdot x \bmod d$

Objective

Compute iteratively b_{i}, the distance from b to the closest point "to its left" at step i.

4 cases

(1) b is in an interval of length a_{i} and we reduce d_{i}, \Rightarrow Nothing to do
(2) b is in an interval of length d_{i} and we reduce a_{i}, \Rightarrow Nothing to do
(3) b is in an interval of length d_{i} and we reduce d_{i},
(9) b is in an interval of length a_{i} and we reduce a_{i}.

Case 3 : reduction of d_{i}

$$
a=11 ; d=45 ; b=30
$$

Case 3 : reduction of d_{i}

$$
a=11 ; d=45 ; b=30
$$

Case 3 : reduction of d_{i}

$$
a=11 ; d=45 ; b=30
$$

Case 3 : reduction of d_{i}

$$
a=11 ; d=45 ; b=30
$$

Case 3 : reduction of d_{i}

$$
a=11 ; d=45 ; b=30
$$

Case 3 : reduction of d_{i}

$$
a=11 ; d=45 ; b=30
$$

b reduction rule

$$
b_{i+1}=b_{i} \quad \bmod a_{i+1}
$$

Computing a lower bound on $b-a \cdot x \bmod d$

4 cases

- b is in an interval of length a_{i} and we reduce d_{i}, \Rightarrow Nothing to do
- b is in an interval of length d_{i} and we reduce a_{i}, \Rightarrow Nothing to do
- b is in an interval of length d_{i} and we reduce d_{i}, \Rightarrow Reduction "from the left" : $b_{i+1}=b_{i}$ mod a_{i+1}
- b is in an interval of length a_{i} and we reduce a_{i}.

Case 4 : reduction of a_{i}

$$
a=34 ; d=45 ; b=30
$$

Case 4 : reduction of a_{i}

$$
a=34 ; d=45 ; b=30
$$

Case 4 : reduction of a_{i}

$$
a=34 ; d=45 ; b=30
$$

Case 4 : reduction of a_{i}

$$
a=34 ; d=45 ; b=30
$$

Case 4 : reduction of a_{i}

$$
a=34 ; d=45 ; b=30
$$

Case 4 : reduction of a_{i}

$$
a=34 ; d=45 ; b=30
$$

b reduction rule

$$
b_{i+1}=\left(b_{i}-a_{i+1}\right) \quad \bmod d_{i+1}
$$

Computing a lower bound on $b-a \cdot x \bmod d$

4 cases

- b is in an interval of length a_{i} and we reduce d_{i}, \Rightarrow Nothing to do
- b is in an interval of length d_{i} and we reduce a_{i}, \Rightarrow Nothing to do
- b is in an interval of length d_{i} and we reduce d_{i}, \Rightarrow Reduction "from the left" : $b_{i+1}=b_{i} \bmod a_{i+1}$
- b is in an interval of length a_{i} and we reduce a_{i}. \Rightarrow Reduction "from the right" : $b_{i+1}=\left(b_{i}-a_{i+1}\right) \bmod d_{i+1}$

Divergence in the two algorithms

Lefèvre algorithm

Update the distance from b to the closest point "to its left" as soon as we add a point to the left of b.
\Rightarrow Condition the reduction of d_{i} and a_{i} by the location of b.
\Rightarrow From division-based to subtraction-based Euclidian algorithm when splitting the interval containing b.

New algorithm

Update the distance from b to the closest point "to its left" at each step of the continued fraction expansion.

Divergence in the two algorithms

Lefèvre algorithm

input : $P(x)=a x+b, \varepsilon, N$
initialisation : $\quad x \leftarrow\{a\} ; \quad y \leftarrow 1-\{a\} ; \quad z \leftarrow\{b\} ;$
if $z<\varepsilon$ then return Fail;
while True do

```
if \(z<x\) then
            \(y \leftarrow y-q \times x\);
            \(u \leftarrow u+q \times v\);
            if \(u+v \geq N\) then return Success;
    else
            \(z \leftarrow z-x ;\)
            if \(z<\varepsilon\) then return Fail;
            \(q \leftarrow\lfloor y / x\rfloor\);
            \(x \leftarrow x-q \times y\);
            \(v \leftarrow v+q \times u\);
            if \(u+v \geq N\) then return Success;
```

 \(q \leftarrow\lfloor x / y\rfloor ; \quad / * b\) is in \(a_{i} * /\)
 \(x \leftarrow x-y ; v \leftarrow u+v ; \quad / *\) reduction of \(a_{i}\) by one \(d_{i} * /\)
 \(y \leftarrow y-x ; u \leftarrow u+v ; \quad / *\) reduction of \(a_{i}\) by one \(d_{i} * /\)

Divergence in the two algorithms

New algorithm

```
input : \(P(x)=a x+b, \varepsilon, N\)
initialisation : \(\quad x \leftarrow\{a\} ; \quad y \leftarrow 1 ; \quad z \leftarrow\{b\}\);
if \(z<\varepsilon\) then return Fail;
while True do
    if \(x<y\) then
        \(q=y / x ; \quad / *\) reduction of \(a_{i} * /\)
        \(y=y-q * x ;\)
        \(u=u+q * v\);
        \(z=z \bmod x ; \quad / *\) update distance to \(b\) */
    else
        \(q=x / y ;\)
        \(x=x-q * y\);
        \(v=v+q * u\);
        if \(z \geq x\) then
            \(z=z-x ; \quad / *\) update distance to \(b\) */
            \(z=z \bmod y ;\)
    if \(u+v \geq N\) then return \(z>\varepsilon\);
```


Divergence within the main loop

A deterministic test

a_{i} and d_{i} are reduced alternatively

\Rightarrow we can avoid divergence by unrolling 2 loop iterations.

New algorithm unrolled

```
input : }P(x)=ax+b,\varepsilon,
initialisation : }\quadx\leftarrow{a}; y\leftarrow1; z % { {b}
while True do
    q=y/x
    y = y -q*x;
    u=u+q*v;
    z=z mod}x\mathrm{ ;
    if u+v\geqN then return z>\varepsilon;
    /* reduction of }
    q=x/y;
    x =x-q*y;
    v=v+q*u;
    if }z\geqx\mathrm{ then
        z = z - x;
        z=z mod y;
    if u+v\geqN then return z>\varepsilon;
```

 \(/ *\) reduction of \(y\)
 Divergence on the main loop (exp, interval $\left[1,1+2^{-13}\right]$)

Normalized mean deviation to the maximum (NMDM)

$$
1-\frac{\operatorname{Mean}\left(\left\{n_{i}, 0 \leq i<w\right\}\right)}{\operatorname{Max}\left(\left\{n_{i}, 0 \leq i<w\right\}\right)}
$$

Lefèvre Algorithm

Divergence on the main loop (exp, interval $\left[1,1+2^{-13}\right]$)

Normalized mean deviation to the maximum (NMDM)

$$
1-\frac{\operatorname{Mean}\left(\left\{n_{i}, 0 \leq i<w\right\}\right)}{\operatorname{Max}\left(\left\{n_{i}, 0 \leq i<w\right\}\right)}
$$

Lefèvre Algorithm

New Algorithm

Divergence on the main loop (exp, interval $\left[1,1+2^{-13}\right]$)

Normalized mean deviation to the maximum (NMDM)

$$
1-\frac{\operatorname{Mean}\left(\left\{n_{i}, 0 \leq i<w\right\}\right)}{\operatorname{Max}\left(\left\{n_{i}, 0 \leq i<w\right\}\right)}
$$

Lefèvre Algorithm

New Algorithm

\Rightarrow Lefèvre algorithm goes from division-based to subtraction-based Euclidian algorithm when splitting interval containing b.

Results

Times in seconds for HR-case search in [1; 2]
$\left(2^{53}\right.$ doubles, $\varepsilon=2^{-96}$)

	CPU (X5650) No SIMD	GPU(C2070)	Speedup
Lefèvre algorithm	36816.10	2446.87	$x 15.0$
New algorithm	34039.94	705.89	$x 48.2$
Speedup	$x 1.08$	$x 3.5$	

Total speedup

Lefèvre on a CPU core \rightarrow New algorithm on GPU : x52.2 .
Lefèvre on a hex-core CPU \rightarrow New algorithm on GPU : x7.5.

Conclusion and perspectives

Conclusion

- Implementation and algorithmic solutions to minimize :
- loop divergence,
- conditional divergence.
- Substancial speedups thanks to a more regular control flow.

Perspectives

- If the targeted function is not well approximated by a degree one polynomial
\Rightarrow Too many HR-cases !
\Rightarrow Exhaustive search of hardness-to-round becomes huge!
- Solution : using higher degree approximations \Rightarrow SLZ algorithm, based on the LLL algorithm.
- Harness SIMD units on other hardware (SSE/AVX CPUs, Intel MIC, ...) with OpenCL, ISPC...

