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The mathematical foundation of fracture mechanics has seen considerable advances
in the last years. This field of study covers a big variety of exciting topics, including
propagation of cracks, equilibrium of structures with thin inclusions in the presence of
delaminations, frictional contact problems, inverse and control problems. The aim of the
workshop ”Mathematical analysis of fracture phenomena for elastic structures and its
applications” is to bring together researchers working on different aspects of these issues.
The workshop provides a platform for researchers to communicate, discuss, and exchange
ideas under the common theme of fracture phenomena.

The first Workshop Mathematical analysis of fracture phenomena for elastic structures
and its applications´ was hosted in Novosibirsk in November 2019 due to the collaboration
of researchers from Japan and Russia. The Second Russia-Japan Workshop was held in
December 2020. The geography of the workshop participants was expanded: researchers
from Russia, Japan, Germany, Austria and Czech Republic were involved. In 2020, the
Workshop was integrated with the 20th Conference of Continuum Mechanics Focusing on
Singularities (CoMFoS20).

CoMFoS was initiated in 1995 under the auspices of the activity group ”Continuum
Mechanics Focusing on Singularities (CoMFoS)” of the Japan Society for Industrial and
Applied Mathematics (JSIAM). From April 2010, the activity group CoMFoS was re-
named ”Mathematical Aspects of Continuum Mechanics (MACM)”. This is the 21st
´onference of CoMFoS and will be held under the co-sponsorship of the Japan - Russia
Research Cooperative Program.

The Workshop and CoMFoS topics:

• elasticity, plasticity

• modeling of composite materials

• fracture mechanics

• study of mathematical models for solids with defects

• asymptotic and multiscale analysis

• optimal shape design

• inverse problems

The workshop is held with the support of Mathematical Center in Akademgorodok
(project No. 075-15-2019-1675) and JSPS (project No. JPJSBP120194824) under the
Japan - Russia Research Cooperative Program.



Contents

Goro Akagi Local well-posedness for some phase-field model of complete damage 5

Vladimir N. Khmelev, Roman N. Golykh, Qiquan Quan, Roman V.

Barsukov, Dmitry V. Genne, Viktor A. Nesterov, Sergey N.

Tsyganok, Vyacheslav D. Minakov Principles of ultrasonic drilling

of extraterrestrial objects: theoretical justification and practical implemen-

tation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Hirotada Honda, Pham Thu Thao, Tam Xiuyao,

Cung Viet Duy, and Mamoru Miyazawa On the extension of reser-

voir computing with an inertial form . . . . . . . . . . . . . . . . . . . . . 7

Takahito Kashiwabara Semigroup and maximal regularity approach to the

primitive equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Daisuke Kawagoe On polynomial compactness of elastic Neumann–Poincaré
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LOCAL WELL-POSEDNESS FOR SOME PHASE-FIELD MODEL OF
COMPLETE DAMAGE

Goro Akagi

Tohoku University, Sendai, Japan

This talk is concerned with local (in time) well-posedness for Frémond’s model of
complete damage in elastic materials (see, e.g., [2, 3]). Frémond’s model is a phase-field
model for damage and consists of elliptic and parabolic equations for a displacement field
𝑢 = 𝑢(𝑥, 𝑡) and a phase-field 𝑧 = 𝑧(𝑥, 𝑡), which represents the locally averaged evolution
of damage at any point 𝑥 ∈ Ω and 𝑡 ∈ (0, 𝑇 ) (in particular, 𝑧 = 1 when the material
is completely integer and 𝑧 = 0 when the elastic bonds have been broken) and which
is supposed to be monotone in time due to the irreversible feature of damage. Similar
phase-field models for damage and fracture have been proposed and studied vigorously
so far; however, well-posedness of such phase-field models often remain widely open for
many years due to severe nonlinearity intrinsic to the models. In this talk, we shall discuss
local well-posedness for the following system:

−div(𝑧∇𝑢) = 𝑔 in Ω× (0, 𝑇 ),

𝜕𝐼(−∞,0](𝑧𝑡) + 𝑧𝑡 −Δ𝑧 + 𝜓′(𝑧) ∋ −1

2
|∇𝑢|2 in Ω× (0, 𝑇 ),

where 𝑔 = 𝑔(𝑥) is a given data, 𝜕𝐼(−∞,0] denotes the subdifferential operator of the in-
dicator function 𝐼(−∞,0] supported over (−∞, 0] and 𝜓 is a smooth 𝜆-convex potential,
equipped with certain boundary and initial conditions. It is noteworthy that the elliptic
constant of the first equation vanishes when 𝑧(𝑥, 𝑡) is equal to zero (i.e., the material is
completely broken at (𝑥, 𝑡)), and therefore, this system is called a complete damage model
and one may expect only local (in time) well-posedness. This talk is based on a joint
work [1] with Giulio Schimperna (Pavia, Italy).

REFERENCES

1. Akagi, G. and Schimperna, G., Local well-posedness for Frémond’s model of complete
damage in elastic solids. to appear in Euro. J. Appl. Math.

2. Frémond, M., Non-smooth Thermomechanics. Springer, Berlin, 2002.

3. Frémond, M., Phase Change in Mechanics. Springer-Verlag, Berlin Heidelberg, 2012.
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PRINCIPLES OF ULTRASONIC DRILLING OF EXTRATERRESTRIAL
OBJECTS: THEORETICAL JUSTIFICATION AND PRACTICAL

IMPLEMENTATION

Vladimir N. Khmelev1, Roman N. Golykh1, Qiquan Quan2, Roman V.
Barsukov1, Dmitry V. Genne1, Viktor A. Nesterov1, Sergey N.
Tsyganok1, Vyacheslav D. Minakov1

1Biysk Technological Institute (branch) of Altai State Technical University named
after I.I. Polzunov, Biysk, Russia
2Harbin Institute of Technology, Harbin, China

Drilling using ultrasonic vibrations is the most promising way to study extraterrestrial
objects due to the possibility of significantly increasing the rate of the channels making
with ensuring minimal destruction of the structure and content of the treated soils. Since
the task of ensuring the maximum rate of the channels making to a given depth is being
solved, for example, for fixing landing modules on asteroids, it becomes necessary to
determine the properties of the treated soil in order to setup optimal modes of ultrasonic
(or combined with ultrasonic) exposure. When drilling on planets, the task of studying
the properties of soils, detecting valuable substances (water) in the deep layers of the soil
without taking them and transporting them to research compartments or to Earth arises.

To solve the problem, a method for monitoring the properties of the soil of extrater-
restrial objects during ultrasonic drilling has been proposed and is being developed.

The principles of the process implementation based on the effects in the following
sequence and combinations are proposed:

• preliminary low-amplitude exposure (with a range of the working end of the emitter
of no more than 10 microns) for indirect measurement of the mechanical properties
of the soil by mechanical impedance proportional to the complex resistance of the
mechanical branch of the equivalent electrical circuit of the piezoelectric ultrasonic
oscillatory system;

• high-amplitude exposure with automatically set maximum effective modes of ultra-
sonic exposure simultaneously with low-frequency shocks and/or pseudo-rotation,
depending on the type and properties of the soil.

For theoretical substantiation and identification of optimal modes of each stage of impact,
models for determining the relationship between the impedance and mechanical properties
of the soil and determining the drilling speed are proposed and developed. The peculiarity
of the model is to take into account the impact-contact effect, i.e. periodic separation of
the radiator from the soil surface. The analysis of the model based on the linear theory
of elasticity allowed us to determine the relationship between the impedance and the
mechanical properties of the soil. Numerical analysis of the influence of the mechanical
properties of the soil on the impedance allowed us to determine that it is most expedient
to control the cosine of the phase shift angle between the force and the displacement
velocity of the working end of the radiator relative to the input end (with a swing of 6
microns, the cosine of the phase shift angle decreases by almost 2 times with an increase
in the elastic modulus from 1 · 1010 to 5 · 1010 Pa).

The proposed theory of soil destruction under the influence of ultrasonic vibrations
is based on the model of K.B. Broberg describing the development and coalescence of
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microcracks, provided that the accumulation of microcracks before the destruction of the
material occurs when exposed for several periods of vibrations.

To simplify calculations with primary high-frequency oscillatory action, a method
for reducing the destruction problem to an approximate system of ordinary differential
equations of the 2nd order was proposed.

The theoretical studies made it possible to determine optimal exposure modes in terms
of frequency and amplitude of vibration ensuring the maximum rate of destruction.

The revealed modes are confirmed by experimental studies of ultrasonic drilling in
terrestrial conditions at room temperature and when drilling in a cryogenic chamber at a
temperature of -80 degrees of Celsius.

The experimental results showed that the greatest energy efficiency of drilling is
achieved with the additional presence of a low-frequency impact with an attached mass
and pseudo-rotational motion.

The work was funded by the Russian Foundation for Basic Research with NSFC ac-
cording to the project № 21-52-53036.

ON THE EXTENSION OF RESERVOIR COMPUTING WITH AN
INERTIAL FORM

Hirotada Honda, Pham Thu Thao, Tam Xiuyao,
Cung Viet Duy, and Mamoru Miyazawa

Faculty of Information and Networking for Innovation and Design,
Toyo university, Tokyo, Japan

1. Introduction and formulation
We propose a new framework for reservoir computing [1]. In this talk, we present the

essence of our proposed method and some results of the numerical experiments. We begin
to formulate the reservoir with the following continuous dynamical system.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜕

𝜕𝑡
�⃗�(𝑥, 𝑡)− 𝜒△�⃗�(𝑥, 𝑡)− 𝜑

(︁∫︁
Ω

�̆� (𝑥, 𝑦)�⃗�(𝑦, 𝑡) d𝑦 + 𝑣(𝑥)�⃗�(𝑡)
)︁
= 0

in Ω𝑇 ≡ (0, 1)× (0, 𝑇 ),

�⃗�(𝑥, 𝑡) = 0⃗ on 𝜕Ω× (0, 𝑇 ),

�⃗�(𝑥, 0) = �⃗�0(𝑥) on Ω,

(1)

where �⃗�(𝑥, 𝑡) ∈ R𝐾 denotes a vector-valued function defined on Ω × R+ ≡ Ω × (0,∞),
△�⃗� = d2�⃗�

d𝑥2 , 𝜒 is a positive constant, 𝑣(𝑥) is a function that depends only on 𝑥, �⃗�(𝑡) ∈ R𝐾

is a vector-valued function that depends only on 𝑡, and �̆� (𝑥, 𝑦) denotes a kernel operator
defined on Ω×Ω with some notable properties described below. We also use the notation

‖ ·‖ to denote an operator norm of a certain operator, and 𝐻 =
(︀
𝐿2(Ω×R+)

)︀𝐾
, the norm

and inner product of which are denoted by | · | and (·, ·), respectively, and

�̆� * �⃗� ≡
∫︁
Ω

�̆� (𝑥, 𝑦)�⃗�(𝑦, 𝑡) d𝑦, ̃︀𝐴(𝑡)�⃗� ≡ 𝐴0�⃗�− 𝐹 (�⃗�, �⃗�).

𝐹 (�⃗�, �⃗�) ≡ �⃗�+ 𝜑
(︁
�̆� * �⃗�+ 𝑣(𝑥)�⃗�(𝑡)

)︁
, 𝐴0�⃗� = −𝜒△�⃗�+ �⃗�.
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Let {�⃗�𝑗}∞𝑗=1 be the eigenfunctions of𝐴0 with a vanishing Dirichlet boundary condition that
correspond to the eigenvalues in ascending order. Next, note that the inertial manifold of
Eq. (1.1) is denoted by a graph of a map Φ : 𝑃𝐻 → (𝐼−𝑃 )𝐻, where 𝑃 is a projection onto
the linear subspace spanned by {𝑤𝑗}. Hereinafter, we assume the following conditions, in
which 𝑀0, 𝑀1, 𝑀𝑠, 𝑀𝑠1, and 𝑀𝑣 denote positive constants.

1. 𝜑 ∈ 𝐶1(R), 𝜑′ ∈ 𝐵𝑈𝐶(R), and |𝜑′(𝑥)| ≤𝑀1 ∀𝑥 ∈ R.

2. 𝑓 ↦→
∫︀
Ω×Ω

�̆� (𝑥, 𝑦)𝑓(𝑦) d𝑦 forms a bounded continuous operator from 𝐿2(Ω), with

a norm on 𝐿2(Ω) denoted by ‖�̆�‖, satisfying ‖�̆�‖ < 𝜒𝜋2/𝑀1.

3. �⃗� ∈ 𝐶1(R+)
⋂︀
𝐵𝑈𝐶(R+), ∇�⃗� ∈ 𝐵𝑈𝐶(R+), and |�⃗�|∞ ≤𝑀𝑠 and |∇�⃗�|∞ ≤𝑀𝑠1.

4. 𝑣 ∈ 𝐵𝑈𝐶(Ω) and |𝑣|∞ ≤𝑀𝑣, |𝑝0| = |𝑃�⃗�0| < 𝑀0,

5. 𝜑′(𝑥) > 0 on R and 𝜑′(𝑥) > 𝑐1 on |𝑥| <
⃦⃦
�̆�

⃦⃦√︀
𝑀2

0 + (1/𝜒)2 +𝑀𝑠𝑀𝑣 with some
𝑐1 > 0.

6. For any family of vector-valued functions {�⃗�𝜎}𝜎∈[0,1] with �⃗�𝜎 = (𝑔
(𝑘)
𝜎 ) that satisfies

�⃗�𝜎 ∈ 𝐷(𝐴) and |𝑔(𝑘)𝜎 (𝑥, 𝑡)| <
⃦⃦
�̆�

⃦⃦√︀
𝑀2

0 + (1/𝜒)2 +𝑀𝑠𝑀𝑣 for 𝑥 ∈ Ω, 𝑡 > 0, and
𝜎 ∈ [0, 1], 𝑣(𝑥) satisfies

(𝑣, �⃗�𝑙) +
𝑀 ′+𝑁 ′∑︁
𝑗=𝑀 ′+1

𝜆−1
𝑗

(︁
𝑣
(︁∫︁ 1

0

𝜑′(︀�⃗�𝜎)︀ d𝜎)︁⊙ �⃗�𝑗

)︁(︀
�̆� * �⃗�𝑗, �⃗�𝑙

)︀
> 0 (𝑙 = 1, 2, . . . ,𝑀 ′).

We employ the concept of the approximate inertial form [2] to derive the expression
obtained below. ⎧⎨⎩

d𝑝

d𝑡
+ 𝐴0𝑝 = 𝑃𝐹

(︀
𝑝+ Φ0(𝑝, �⃗�(𝑡)), �⃗�(𝑡)

)︀
,

𝑝
⃒⃒
𝑡=0

= 𝑝0.
(2)

Here, Φ0 denotes the approximate inertial manifold [2], the definition of which will be
clarified during the talk.

2. Results
In our previous paper [1], we have proven the following:

Theorem 1 Let 𝑇 > 0 be arbitrary, and suppose that conditions (A)–(F) hold. Moreover,

we assume that 𝑀1‖�̆�‖+
(︀
1 +𝑀1‖�̆�‖

)︀2
𝐴0(𝜒) < 𝜒𝜋2, where 𝐴0(𝜒) =

𝜒
(︀
𝑒1/4

√
𝜒−𝑒−1/4

√
𝜒
)︀2(︀

𝑒1/2
√
𝜒+𝑒−1/2

√
𝜒
)︀ .

Thus, we have the following properties.

(i) For two initial data 𝑝0𝑗 ∈ 𝐷(𝐴0) (𝑗 = 1, 2), there exists a certain 𝜔1 > 0 such that
the corresponding solutions 𝑝(𝑗) (𝑗 = 1, 2) of Eq. (1.2) satisfy the echo state property⃒⃒
(𝑝(1) − 𝑝(2))(𝑡)

⃒⃒
≤ 𝑐

⃒⃒
𝑝01 − 𝑝02

⃒⃒
𝑒−𝜔1𝑡 𝑡 ∈ (0, 𝑇 ).

(ii) For two input signals �⃗�𝑗(𝑡) (𝑗 = 1, 2), the corresponding solutions 𝑝𝑗 (𝑗 = 1, 2) of
Eq. (1.2) satisfy∫︁ ∞

0

⃒⃒
(𝑝1 − 𝑝2)(𝑡)

⃒⃒2
d𝑡 ≥ 𝑐(𝜒)

𝑀 ′∑︁
𝑙=1

∫︁ ∞

0

⃒⃒⃒∫︁ 𝑡

0

𝑒−𝜆𝑙(𝑡−𝑡′)�⃗�2(𝑡
′)⊤𝑠(𝑡′)d𝑡′

⃒⃒⃒2
d𝑡,



9

where 𝑠 = �⃗�1(𝑡) − �⃗�2(𝑡), �⃗�2(𝑡) denotes a vector-valued function whose components
are all positive for 𝑡 > 0, and 𝑐(𝜒) denotes a positive constant that depends on 𝜒.

We have implemented the discretized version of this scheme and an output layer that
contains a linear unit. Some types of regularization (ridge, lasso, and elastic net) can also
be implemented in this context. In this talk, we present some results of the numerical
experiments conducted using these output layers with some actual datasets.

REFERENCES

1. Honda, H., “Reservoir Computing with an Inertial Form,” SIAM J. Appl. Dyn. Syst.,
20(2021), 1320–1347.

2. Jolly, M. S., Kevrekidis, I. G. and Titi, E. S., Preserving dissipation in approximate
inertial forms for the Kuramoto–Sivashinsky equation, J. Dyn. Diff. Equat. 2 (1991),
179–197.

SEMIGROUP AND MAXIMAL REGULARITY APPROACH TO THE
PRIMITIVE EQUATIONS

Takahito Kashiwabara

The University of Tokyo, Tokyo, Japan

We review our results so far obtained for the primitive equations (PEs), which describe
large-scale motion of ocean or atmosphere. In the simplified form, they read:

𝜕𝑡𝑣 −Δ𝑣 + (𝑢 · ∇)𝑣 +∇𝐻𝑝 = 0 on Ω× (0,∞),
𝜕𝑧𝑝 = 0 on Ω× (0,∞),

𝑤|𝑧=−ℎ,0 = 0 on T2,
𝑣(0) = 𝑎 on Ω,
div 𝑢 = 0 on Ω× (0,∞),

where Ω = T2 × (−ℎ, 0), 𝑢 = (𝑣, 𝑤) = (𝑣1, 𝑣2, 𝑤) is the 3D velocity, 𝑝 means the pressure,
and ∇𝐻 = (𝜕𝑥, 𝜕𝑦)

⊤. Compared with the 3D incompressible Navier–Stokes equation, one
can see that there is no evolution law described for the vertical velocity 𝑤 and that 𝑝 is
independent of 𝑧, implying the hydrostatic balance.

Our results are concerned with the global-in-time existence and uniqueness of a strong
solution provided by an analytic semigroup approach or by a maximal-regularity theory.
In particular, investigation of the linear part of the PEs, i.e., the hydrostatic Stokes
operator, has a central importance. We will first present the 𝐿𝑝-theory where the strong
solution is constructed for initial data belonging to 𝐻2/𝑝,𝑝. We show that the solution
becomes 𝐶∞ (even real analytic) in 𝑥 and 𝑡 after initial time. Then the endpoint case
𝑝 = ∞ (more precisely, an anisotropic space 𝐿∞

𝑥𝑦𝐿
𝑝
𝑧 will be considered) is discussed, which

requires more delicate arguments due to the lack of boundedness in 𝐿∞ of the hydrostatic
Helmholtz projector. Finally, justification of hydrostatic approximation in the 𝐿𝑝-setting,
that is, convergence from the Navier–Stokes equations to the PEs in the zero aspect-ratio
limit, will also be mentioned.

This talk is based on a series of papers collaborated with Prof. Hieber, Prof. Hussein,
Prof. Giga, Dr. Gries, Dr. Wrona, and Dr. Furukawa.
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ON POLYNOMIAL COMPACTNESS OF ELASTIC
NEUMANN–POINCARÉ OPERATORS ON 𝐶1,𝛼 BOUNDARIES IN

THREE DIMENSIONS

Daisuke Kawagoe

Graduate School of Informatics, Kyoto University, Kyoto, Japan

1. Introduction
The elastic Neumann–Poincaré (eNP) operator is a boundary integral operator that

appears naturally when we solve classical boundary value problems for the Lamé system
using layer potentials. Recently, there is rapidly growing interest in the spectral properties
of the eNP operator in relation to cloaking by anomalous localized resonance (CALR) [3].
Anomalous localized resonance occurs at the accumulation point of eigenvalues, which
motivates us to investigate the spectral structure of the eNP operator.

The Lamé system, a system of equations of linear elasticity, is described by

ℒ𝜆,𝜇𝑢 := 𝜇Δ𝑢+ (𝜆+ 𝜇)∇∇ · 𝑢 = 𝑓,

where 𝑢 = (𝑢1, . . . , 𝑢𝑑) (𝑑 = 2, 3) is the displacement, (𝜆, 𝜇) are the Lamé constants, and
𝑓 is the force term. In what follows, we assume that the pair of constants (𝜆, 𝜇) satisfies
the strong convexity condition:

𝜇 > 0, 𝑑𝜆+ 2𝜇 > 0.

Let Γ(𝑥) = (Γ(𝑥))𝑑𝑖,𝑗=1 be the fundamental solution to the Lamé system associated
with the Lamé constants (𝜆, 𝜇), namely,

Γ𝑖𝑗(𝑥) :=

⎧⎪⎨⎪⎩
𝛼1

2𝜋
𝛿𝑖𝑗 log |𝑥| −

𝛼2

2𝜋

𝑥𝑖𝑥𝑗
|𝑥|2

, 𝑑 = 2,

−𝛼1

4𝜋

𝛿𝑖𝑗
|𝑥|

− 𝛼2

4𝜋

𝑥𝑖𝑥𝑗
|𝑥|3

, 𝑑 = 3,
|𝑥| ≠ 0,

where

𝛼1 :=
1

2

(︂
1

𝜇
+

1

𝜆+ 2𝜇

)︂
, 𝛼2 :=

1

2

(︂
1

𝜇
− 1

𝜆+ 2𝜇

)︂
.
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Let Ω be a bounded domain in R𝑑 with a Lipschitz boundary 𝜕Ω. For a vector-valued
function 𝑢, the conormal derivative 𝜕𝜈𝑢 corresponding to the Lamé system is defined by

𝜕𝜈𝑢 := 𝜆(∇ · 𝑢)𝑛+ 2𝜇(̂︀∇𝑢)𝑛,
where 𝑛 is the outward unit normal to 𝜕Ω and ̂︀∇𝑢 is the symmetric gradient of the
vector-valued function 𝑢, namely

̂︀∇𝑢 :=
1

2

(︀
∇𝑢+ (∇𝑢)𝑇

)︀
.

Here, (∇𝑢)𝑇 denotes the transpose of the matrix ∇𝑢. Then, the eNP operator K* is
defined by

K*[𝑓 ](𝑥) := p.v.

∫︁
𝜕Ω

𝜕𝜈𝑥Γ(𝑥− 𝑦)𝑓(𝑦) 𝑑𝜎𝑦, a.e. 𝑥 ∈ 𝜕Ω.

Here, we consider the conormal derivative 𝜕𝜈𝑥Γ(𝑥− 𝑦) of the matrix columnwise and p.v.
stands for the Cauchy principal value.

2. Main Results
The main result in this talk is the following.

Theorem 2 Let Ω be a bounded domain in R3 with the 𝐶1,𝛼-smooth boundary for some
𝛼 > 0. Let K* be the eNP operator on 𝜕Ω corresponding to the pair of Lamé constants
(𝜆, 𝜇). Let 𝑝3(𝑡) := 𝑡(𝑡+ 𝜅0)(𝑡− 𝜅0), where 𝜅0 is given by

𝜅0 :=
𝜇

2(𝜆+ 2𝜇)
.

Then, 𝑝3(K
*) is compact on 𝐻−1/2(𝜕Ω)3. Moreover, K*(K* + 𝜅0𝐼), K

*(K* − 𝜅0𝐼) and
(K*)2 − 𝜅20𝐼 are not compact on 𝐻−1/2(𝜕Ω)3.

From Theorem 2 and the spectral mapping theorem, we obtain the following result on
the asymptotic behavior of eigenvalues.

Corollary 1 The spectrum of K* on 𝐻−1/2(𝜕Ω)3 consists of three non-empty sequences
of eigenvalues which converge to 0, 𝜅0 and −𝜅0, respectively.

Theorem 2 was once proved in [2] by assuming 𝐶∞-smoothness on the boundary 𝜕Ω.
On the other hand, in the two dimensional case, Ando et al [1] proved the following
proposition, which motivated us to prove Theorem 2 on 𝐶1,𝛼 boundaries.

Proposition 1 Let Ω be a bounded domain in R2 with the 𝐶1,𝛼-smooth boundary for some
𝛼 > 0. Let K* be the eNP operator on 𝜕Ω corresponding to the pair of Lamé constants
(𝜆, 𝜇). Let 𝑝2(𝑡) := (𝑡+ 𝜅0)(𝑡− 𝜅0). Then, 𝑝2(K

*) is compact on 𝐻−1/2(𝜕Ω)3.

The key idea to the proof of Theorem 2 is to “approximate” the eNP operator by the
surface Riesz transforms 𝑅𝑔

𝑗 , which are defined by

𝑅𝑔
𝑗 [𝑓 ](𝑢) =

1

2𝜋
p.v.

∫︁
R2

(𝑢𝑗 − 𝑣𝑗)⟨𝑢− 𝑣,𝐺(𝑢)(𝑢− 𝑣)⟩−3/2𝑓(𝑣)𝑑𝑣, 𝑗 = 1, 2.

Here, 𝐺(𝑢) = (𝑔𝑖𝑗(𝑢))𝑖,𝑗=1,2 is a positive-definite symmetric matrix valued function on R2

and the bracket ⟨·, ·⟩ implies the inner product on R2.
This result was obtained by a joint work with Hyeonbae Kang (Inha University), and

it was supported by NRF grants No. 2016R1A2B4011304 and 2017R1A4A1014735.
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Poincaré operator and cloaking by anomalous localized resonance for the elasto-static
system, Eur. J. App. Math., 29, 2018, pp. 189–225.

2. Ando K., Kang H., and Miyanishi Y. Elastic Neumann–Poincaré Operators on three di-
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INVERSE PROBLEMS FOR ELASTIC BODY WITH CLOSELY
LOCATED THIN INCLUSIONS

Alexander Khludnev

Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, Russia

We consider an equilibrium problem for a 2D elastic body with two thin closely located
elastic inclusions. Inclusions are in a contact with each other which means a presence of
a crack between them. Nonlinear boundary conditions of inequality type are imposed at
the crack faces providing a mutual non-penetration. Moreover, the inclusions cross the
external boundary of the elastic body. The unique solvability of the problem is proved.
Passages to limits are investigated as rigidity parameters of the inclusions tend to infinity,
and limit models are analyzed. Inverse problems for finding the rigidity parameter and
Lamé parameters of the elastic body are investigated with a boundary measurement of
the tip point displacement of the inclusion.

REFERENCES
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MINIMIZING MOVEMENTS FOR MEAN CURVATURE FLOW OF
PARTITIONS

Shokhrukh Kholmatov

University of Vienna

In this talk I will discuss a weak notion of mean curvature flow of networks and space
partitions obtained via the minimizing movements (Almgren-Taylor-Wang-De Giorgi)
method, approximating the evolution with a sequence of discrete minimum problems as-
sociated to the perimeter perturbed by a non-symmetric bulk term. Besides the existence,
I discuss some properties of the flow, such as time-continuity, comparison properties, and
also consistency with classical solutions in some special cases. Also I will address some
qualitative properties of the flow for long times.
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GEOMETRICALLY EXACT INTEGRAL-BASED NONLOCAL MODEL
OF DUCTILE DAMAGE AND FRACTURE: BASIC PROPERTIES AND

NUMERICAL TREATMENT

Alexey Shutov, Vladislav Klyuchancev

Lavrentyev Institute of Hydrodynamics, Novosibirsk, Russia
Novosibirsk State University, Novosibirsk, Russia

We develop the integral-based approach to nonlocal damage and fracture in ductile
materials [2]. The starting point is the phenomenological model of finite strain plasticity
with ductile damage [3]. This model is delocalized by applying the integral-based averag-
ing operator. It smoothens the damage-related parameters like continuity and porosity.
At least one internal length-scale parameter in introduced into the formulation, depending
on the implemented averaging procedure. Thus, the damage localization is constrained by
the presence of length-like parameters. This constraint regularizes the initial boundary
value problem. The regularization enables numerically robust and physically plausible
simulations of crack initiation and propagation [1]. Spurious localization of damage and
plastic strain into a zero thickness band is prevented. The basic properties of the new
non-local material model are analysed theoretically: We show that the model is ther-
modynamically consistent, objective, and w-invariant. Robust numerical algorithms are
suggested. The model is implemented into an academic non-linear finite element code. As
a demonstration problem, we simulate crack initiation and propagation in a plate with a
hole. The simulation results agree with actual experiment in terms of applied force, plastic
zone evolution, and cracking patterns. Another series of tests includes fracture of com-
pact tension specimen. The force-displacement curves, estimated fracture toughness, and
damage patterns showcase the mechanical phenomena, captured by the modelling frame-
work. The impact of the constitutive assumptions on the predicted structural strength is
studied: Isotropic and anisotropic delocalization is discussed; the averaging is applied on
current and reference configurations; continuity is employed as a dual damage variable to
restrain the nonphysical diffusion of damage.

The study was supported by the Russian Science Foundation within the project num-
ber 19-19-00126.
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POROELASTIC MEDIUM WITH NON-PENETRATING CRACK
DRIVEN BY HYDRAULIC FRACTURE

Victor A. Kovtunenko

Institute for Mathematics and Scientific Computing, Karl-Franzens University of
Graz, NAWI Graz, Austria
Lavrentyev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of
Sciences, Novosibirsk, Russia

A new class of unilateral variational models appearing in the theory of poroelastic-
ity is introduced and studied. A poroelastic medium consists of solid phase and pores
saturated with a Newtonian fluid. The medium contains a fluid-driven crack, which is
subjected to non-penetration between the opposite crack faces. The fully coupled poroe-
lastic system includes elliptic-parabolic governing equations under the unilateral con-
straint. Well-posedness of the corresponding variational inequality is established based
on the Rothe semi-discretization in time, after subsequent passing time step to zero. The
NLCP-formulation of non-penetration conditions is given which is useful for a semi-smooth
Newton solution strategy.

The author thanks the European Union’s Horizon 2020 Research and Innovation Pro-
gramme (advanced grant No. 668998 OCLOC) of the European Research Council (ERC),
and the Russian Foundation for Basic Research (RFBR) project 18-29-10007 for partial
financial support.
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OPTIMAL CONTROL OF THE LOCATION OF THE HINGE POINT OF
RIGID INCLUSIONS IN AN EQUILIBRIUM PROBLEM OF A

TIMOSHENKO PLATE

Nyurgun Lazarev

North-Eastern Federal University, Yakutsk, Russia

We consider a family of contact problems on the equilibrium of a Timoshenko com-
posite plate containing two thin rigid inclusions, which are connected in a hinged manner.
The family’s problems depends on a parameter specifying the coordinate of a connection
point of the inclusions. An optimal control problem is formulated with a quality func-
tional defined using an arbitrary continuous functional given on a suitable Sobolev space.
In this case, control is specified by the coordinate parameter of the connection point of
the inclusions. The continuity of solutions of the family’s problems on this parameter is
proved. The solvability of the optimal control problem is established.

The work was funded by the Ministry of Education and Science of the Russian Feder-
ation within the framework of the base part of the state task № FSRG-2020-0006.
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REGULARITY AT THE CRACK-TIP FOR MUMFORD-SHAH
MINIMIZERS: SURGERY VS VARIATIONS

Hayk Mikayelyan

School of Mathematical Sciences
University of Nottingham Ningbo China
199 Tai Kang East Road, 315100 Ningbo, PR China

In this presentation I will talk about some recent results in the regularity of the dis-
continuity set at the crack-tip/-front for the minimizers of the Mumford-Shah functional
in R2 and R3.

The main focus will be on the new Euler-Lagrange condition at the crack-tip for the
minimizers of the Mumford-Shah functional in the plane, which was discovered in [1] and
[2]. The original proof based on geometric “surgery” has been recently simplified in [3]
due to a rather sophisticated variational approach.

If the time allows I will also touch the numerical machinery developed in [5] for the
2-D case, as well as some surprising results obtained in [4] for the crack-front in 3-D.
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VIBROSEIS REFLECTION EXPLORATION FOR ANISOTROPIC
MEDIA

Gen Nakamura

Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan

Let 𝑥 = (𝑥1, 𝑥2, 𝑥3) be a point in a bounded domain Ω ⊂ R3 with Lipschitz boundary
Γ. We consider Ω as a reference domain for a linear elastic medium with elasticity tensor
𝐶 = (𝐶𝑖𝑗𝑘𝑙(𝑥)) ∈ 𝐿∞(Ω). It is physically natural to assmume the following symmetry and
strong convexity conditions for 𝐶:
for any a.e. 𝑥 ∈ Ω and indices 𝑖, 𝑗, 𝑘, 𝑙 ∈ {1, 2, 3}, it satisfies
symmetry: {︂

𝐶𝑖𝑗𝑘𝑙(𝑥) = 𝐶𝑖𝑗𝑙𝑘(𝑥) (minor symmetry),
𝐶𝑖𝑗𝑘𝑙(𝑥) = 𝐶𝑘𝑙𝑖𝑗(𝑥) (major symmetry)
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strong convexity:

∃𝛿 > 0 s.t. for any symmetric matrix 𝜖 = (𝜖𝑖𝑗),

𝜖 : (𝐶 :: 𝜖) =
∑︀3

𝑖,𝑗,𝑘,𝑙=1𝐶𝑖𝑗𝑘𝑙(𝑥)𝜖𝑖𝑗𝜖𝑘𝑙 ≥ 𝛿(𝜖 : 𝜖) (a.e.𝑥 ∈ Ω)

The (linear) displacement vector 𝑢 = (𝑢1, 𝑢2, 𝑢3) satisfies the elasticity equations of system

(𝜌𝜕2𝑡 𝑢− 𝐿𝐶𝑢)𝑖 = (𝜌𝜕2𝑡 𝑢− div(𝐶 :: ∇𝑢))𝑖

:= 𝜌𝜕2𝑡 𝑢𝑖 −
3∑︁

𝑗,𝑘,𝑙=1

𝜕𝑗 (𝐶𝑖𝑗𝑘𝑙(𝑥)𝑙𝑢𝑘) = 0, 1 ≤ 𝑖 ≤ 3, in Ω𝑇 = Ω× (0, 𝑇 ),

where 𝜕𝑗 = 𝜕/(𝜕𝑥𝑗), 0 < 𝜌0 ≤ 𝜌 ∈ 𝐿∞(Ω) is the density bounded from below by a
constant 𝜌0.

Now let Σ ⊂ Γ𝑁 be an non-empty, open, connected set, Σ𝑇 = Σ × (0, 𝑇 ) and

�̇�−1/2(Σ) := {𝑔 ∈ 𝐻
−1/2

(Γ) : supp 𝑔 ⊂ Σ}. Consider

(MP)

⎧⎨⎩
(𝜌𝜕2𝑡 𝑢− 𝐿𝐶)𝑢 = 0 in Ω𝑇 ,

𝜕𝐶𝑢 := (𝐶 :: ∇𝑢)𝜈 = 𝑔 ∈ 𝐻1((0, 𝑇 ); �̇�−1/2(Σ) on Γ𝑇 ,
𝑢
⃒⃒
𝑡=0

= 0 ∈ 𝐻1(Ω), 𝜕𝑡𝑢
⃒⃒
𝑡=0

= 0 ∈ 𝐿2(Ω), in Ω,

where 𝜈 is the outer unit normal of Γ.

Well-posedness of (MP) : There exists a unique solution 𝑢 ∈ 𝐿∞((0, 𝑇 );𝐻1(Ω)) with
𝜕𝑡𝑢 ∈ 𝐿∞((0, 𝑇 );𝐿2(Ω)), 𝜕2𝑡 𝑢 ∈ 𝐿∞((0, 𝑇 ); (𝐻1(Ω)′) and it depends continuously on 𝑔.

Based on the well-posedness of (MP), we defined the localized Neumann-to-Dirichlet
map=ND map as follows.

ND map Φ𝑇,Σ
𝜌,𝐶 :

Φ𝑇,Σ
𝜌,𝐶 : 𝐻1((0, 𝑇 ); �̇�−1/2(Σ)) ∋ 𝑔 ↦→ 𝑢𝑔

⃒⃒
Σ𝑇

∈ 𝐻1((0, 𝑇 );𝐻
1/2

(Σ))

with the solution 𝑢 = 𝑢𝑔 of (MP)0.

Further assumptions on the density and elastic tensor:

• finitely many subdomains 𝐷𝛼 ⊂ Ω, 𝛼 ∈ 𝐴, s.t.

Ω̄ = ∪𝛼∈𝐴𝐷𝛼, 𝐷𝛼 ∩𝐷𝛽 = ∅ if 𝛼 ̸= 𝛽

{𝐷𝛼}𝛼∈𝐴/{𝐷𝛼}𝛼∈𝐴 and each 𝜕𝐷𝛼 are called cover of Ω and interface, respectively.
Each interface is Lipschitz smooth.

• 𝜌, 𝐶 are homogeneous (i.e. constant) in each 𝐷𝛼.

Refer these as saying (𝜌, 𝐶) is ”piecewise homogeneous”.

Inverse problem: Show the uniqueness of identifying the density 𝜌 and elasticity tensor
𝐶 by knowing Φ𝑇,Σ

𝜌,𝐶 . Especially identify in a region of interest (ROI) with a time small as
possible.
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This is a typical question asked for the vibroseis exploration technique in reflection seis-
mology.

Our aim is to give some result which give some mathematical foundation for the
vibroseis exploration technique.

Main results: There exists a time 𝑇 which is possible to estimate and gives affirmative
answers to the aforementioned inverse problem as follows.

• If the interfaces are known, we have the uniqueness under ”curvature condtion” on
the interfaces (i.e. it is locally 𝐶1 and the image of Gauss map contains the image
of a non-constant continuous curve).

• If the interfaces are unknown, we have the uniqueness under ”strong curvature con-
dition” (i.e the curvature condition holds everywhere on each interface which doesn’t
touch 𝜕Ω) and piecewise analytic condition on the interfaces. The curvature condi-
tion and strong curvature condition can be removed if 𝐶 is transversally isotropic
(i.e. the case 𝐶 has only one symmetric axis).

Remark
(i) If 𝜌, 𝐶 are analytic on each 𝐷𝛼 and 𝐶 is isotropic, the curvature condition and strong
curvature condition can be removed in the above statements of the main results.
(ii) The keys to proving the main results and the above (i) are the propagation of the
ND-map and the theory of subanalytic sets.

REVISITING J-INTEGRAL IN FRACTURE MECHANICS

Kohji Ohtsuka, Hideyuki Azegami

Hiroshima Kokusai Gakuin University, Hiroshima, Japan
Nagoya University, Nagoya, Japan

We start by revisiting J-integral in Rice[12, 13] from a mathematical point of view.
Consider a linear or nonlinear elastic body (𝑢, 𝜀, 𝜎) under body force 𝑓 , surface force 𝑔 and
subjected to 2D deformation; 𝑢 = (𝑢𝑖(𝑥1, 𝑥2))𝑖=1,2, 𝜀𝑖𝑗(𝑢) = (𝜕𝑢𝑖/𝜕𝑥𝑗 + 𝜕𝑢𝑗/𝜕𝑥𝑖)/2, 𝜎𝑖𝑗 =

𝜕̂︁𝑊 (𝑥, 𝜀)/𝜀𝑖𝑗, 𝑖, 𝑗 = 1, 2. Here ̂︁𝑊 (𝑥, 𝜀) is strain-energy density. Considering that there
is a defect Σ inside a smooth domain Ω, the constitutive equation of the elastic body is
defined on ΩΣ := Ω ∖ Σ, fixed on Γ𝐷 ⊂ 𝜕Ω, 𝑔 is given on Γ𝑁 := 𝜕Ω ∖ Γ𝐷, and stress free
on Σ. Here, consider a crack or a notch as defects Σ.

For a vector field 𝜇, by the chain rule and symmetry of second derivatives, we have

𝜇 · ∇𝑥
̂︁𝑊 (𝑥, 𝜀) = 𝜇 · ∇𝜉

̂︁𝑊 (𝜉, 𝜀)|𝜉=𝑥 + 𝜎 : 𝜀(𝜇 · ∇𝑢)− 𝜎 : (∇𝜇∇𝑢) (1)

By Green’s formula, we obtain for a domain 𝐴 ∩ ΩΣ∫︁
𝐴∩ΩΣ

𝜎 : 𝜀(𝜇 · ∇𝑢)𝑑𝑥 =

∫︁
𝐴∩ΩΣ

𝑓 · (𝜇 · ∇𝑢) +
∫︁
𝜕(𝐴∩ΩΣ)

𝑇 · (𝜇 · ∇𝑢)𝑑𝑠 (2)∫︁
𝐴∩ΩΣ

𝜇 · ∇𝑥
̂︁𝑊 (𝑥, 𝜀)𝑑𝑥 =

∫︁
𝜕(𝐴∩ΩΣ)

̂︁𝑊 (𝑥, 𝜀)𝜇 · 𝑛 𝑑𝑠−
∫︁
𝐴∩ΩΣ

̂︁𝑊 (𝑥, 𝜀)div𝜇 𝑑𝑥 (3)
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where 𝑛 is the outward unit normal of 𝜕(𝐴∩ΩΣ) and 𝑇 = 𝜎𝑛 the surface force. J-integral
𝐽𝐶 and its path independence are derived in [12] using the virtual work principle and

the divergence theorem when 𝜇 = 𝑒1 := (1, 0) where elasticity is homogeneous ̂︁𝑊 (𝑥, 𝜀) =̂︁𝑊 (𝜀), 𝑓 = 0, In 𝜇, (2) and (3) are the principle of virtual work and the divergence theorem,
repectively.

We now define Generalize J-integal (GJ-integral) 𝐽𝐴(𝑢, 𝜇) := 𝑃𝐴(𝑢, 𝜇) +𝑅𝐴(𝑢, 𝜇) by

𝑃𝐴(𝑢, 𝜇) :=

∫︁
𝜕(𝐴∩ΩΣ)

{̂︁𝑊 (𝑥, 𝜀)𝜇 · 𝑛− 𝑇 · (𝜇 · ∇𝑢)}𝑑𝑠 (4)

𝑅𝐴(𝑢, 𝜇) := −
∫︁
𝐴∩ΩΣ

{𝜇 · ∇𝜉
̂︁𝑊 (𝑥, 𝜀) + 𝑓 · (𝜇 · ∇𝑢)}𝑑𝑥

+

∫︁
𝐴∩ΩΣ

{𝜎 : (∇𝜇∇𝑢)− ̂︁𝑊 (𝑥, 𝜀)div𝜇}𝑑𝑥 (5)

Denoting by 𝐴(𝐶) the domain surrounded by the closed path 𝐶, 𝐽𝐶 = 𝑃𝐴(𝐶)(𝑢, 𝑒1) if
elasticity is homogeneous and 𝑓 = 0. The following theorem corresponds to the path
independence of the J-integral in [12].

Theorem 3 If (1), the principle of virtual work (2) and the divergence theorem (3) hold,
then

𝐽𝐴(𝑢, 𝜇) = 0 for all 𝜇 ∈ 𝑊 1,∞(R2;R2) (6)

GJ-integral is proposed, and Theorem 3 is proved in [9]. In [12], the following was shown
which suggested that the energy release rate 𝒢 = 𝐽𝐶 from [3]. Cherepanov [1] also derive
J-integral and 𝒢 = 𝐽𝐶 by a consideration of the law of conservation of energy during
crack growth.

Theorem 4 Assume that Σ is the crack along 𝑥1-axis. For an isotropic elastic body, if
the closed path 𝐶 surrounds the crack tip of Σ

𝐽𝐴(𝐶)(𝑢, 𝑒1) = 𝐽𝐶 =
1

𝐸 ′ (𝐾
2
𝐼 +𝐾2

𝐼𝐼) (7)

where 𝐸 ′ = 𝐸(plane stress); = 𝐸/(1− 𝜈2)(plane strain), 𝐾1, 𝐾𝐼𝐼 are stress intensity fac-
tors (SIFs) for the opening, in-plane sliding,

By Theorem 4 and the contraposition of Theorem 3, (1)-(3) does not hold when Σ is a

crack, and
∫︀
𝐴(𝐶)

𝑒1 · ∇̂︁𝑊 (𝜀)𝑑𝑥 = ∞ if SIF is non-zero. Therefore, it is difficult to prove

𝒢 = 𝐽𝐶 for a crack using mechanics. In [13], 𝒢 = 𝐽𝐶 is proved when Σ is smooth notch.
The first mathematical proof seems to be 𝒢 = 𝑅ΩΣ

(𝑢, 𝛽𝑒1) = 𝐽𝐶 in [2] where 𝛽 is the cut-

off function of the crack tip. In the same year, it is proved that 𝒢 = 𝐽𝐴(𝑢, 𝜇𝐶)
(︁∫︀

𝜕Σ
Σ̇𝑑𝜆

)︁−1

when Σ is 2-dimensional smooth manifold in R3 with the edge 𝜕Σ and grow smoothly
(𝜇𝐶 the vector field obtained from growth and Σ̇ speed) in [9]. Considering Hadamard’s
variational formula, it is proved that −𝑑ℰ/𝑑𝑡 = 𝑅ΩΣ

(𝑢, 𝜇𝜑) in [10], when the singulr points
moving 𝛾 ↦→ 𝜑(𝛾) inside Ω in linear problems. Later using the abstract theory in Banach
space by Kimura[7], −𝑑ℰ/𝑑𝑡 = 𝑅ΩΣ

(𝑢, 𝜇𝜑) is proved in [11] in nonlinear case. As far as I
know, there are some in the references as mathematical studies on 𝒢 = 𝑅ΩΣ

(𝑢, 𝛽𝑒1) = 𝐽𝐶
under non-penetration conditions or nonlinear elasticity. In addition, the wrong use of
J-integral in engineering and the numerical calculation by FEM will be talked.
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IMPROVED APPROXIMATIONS IN HOMOGENIZATION OF HIGHER
ORDER ELLIPTIC OPERATORS

Svetlana Pastukhova

Russian Technological University – MIREA, Moscow, Russia

In the space R𝑑, 𝑑≥2, we consider divergence-type operators of an even order 2𝑚≥4

𝐴𝜀 = (−1)𝑚
∑︁

|𝛼|=|𝛽|=𝑚

𝐷𝛼(𝑎𝜀𝛼𝛽(𝑥)𝐷
𝛽) (1)

with 𝜀-periodic coefficients 𝑎𝜀𝛼𝛽(𝑥) = 𝑎𝛼𝛽(𝑦)|𝑦=𝜀−1𝑥, 𝜀 > 0 is a small parameter. Here,
𝛼=(𝛼1, . . . , 𝛼𝑑) is a multiindex of length |𝛼|=𝛼1 + . . . + 𝛼𝑑, 𝛼𝑗∈Z≥0, 𝐷

𝛼 = 𝐷𝛼1
1 . . . 𝐷𝛼𝑑

𝑑 ,
𝐷𝑖 = 𝐷𝑥𝑖

, 𝑖 = 1, . . . , 𝑑; the coefficients 𝑎𝛼𝛽(𝑦) are real, measurable, 1-periodic with
periodicity cell 𝑌=[−1/2, 1/2)𝑑, and satisfy the conditions

‖𝑎𝛼𝛽‖𝐿∞(𝑌 ) ≤ 𝜆1, ∀𝛼, 𝛽, |𝛼| = |𝛽| = 𝑚,∫︁
R𝑑

∑︁
|𝛼|=|𝛽|=𝑚

𝑎𝛼𝛽(𝑥)𝐷
𝛽𝜙𝐷𝛼𝜙𝑑𝑥 ≥ 𝜆0

∫︁
R𝑑

∑︁
|𝛼|=𝑚

|𝐷𝛼𝜙|2 𝑑𝑥 ∀𝜙 ∈ 𝐶∞
0 (R𝑑)

(2)

for some positive constants 𝜆0 and 𝜆1. Operators of the type (1) with 𝑚=2 appear in the
study of elastic thin plates made of composite materials with periodic structure.



20

With the family 𝐴𝜀 we associate the homogenized operator 𝐴 of the same class (2)

𝐴 = (−1)𝑚
∑︁

|𝛼|=|𝛽|=𝑚

𝐷𝛼�̂�𝛼𝛽𝐷
𝛽, (3)

where the coefficients �̂�𝛼𝛽 are constant and can be expressed in terms of the solutions to the
problems on the periodicity cell 𝑌 . Over the last decade, there has been a great interest
in approximation of the resolvent (𝐴𝜀+1)−1 in different operator norms and estimation of
errors with respect to the parameter 𝜀. In particular, as is proved in [1],[2],

‖(𝐴𝜀 + 1)−1 − (𝐴+ 1)−1‖𝐿2(R𝑑)→𝐿2(R𝑑) ≤ 𝐶𝜀, (4)

‖(𝐴𝜀 + 1)−1 − (𝐴+ 1)−1 − 𝜀𝑚𝒦𝜀‖𝐿2(R𝑑)→𝐻𝑚(R𝑑) ≤ 𝐶𝜀, (5)

where the constant 𝐶 depends only on the dimension 𝑑 and constants 𝜆0 and 𝜆1 in (2).
The correcting operator 𝒦𝜀 is obtained by using the solutions to the problems on the
periodicity cell which are introduced to compute coefficients of the operator 𝐴. Note that

‖𝜀𝑚𝒦𝜀‖𝐿2(R𝑑)→𝐻𝑚(R𝑑)≤𝑐, ‖𝒦𝜀‖𝐿2(R𝑑)→𝐿2(R𝑑)≤𝑐. (6)

By (6)2, the estimate (4) in the operator 𝐿2(R𝑑)-norm can be obtained by simplifying (5).
Due to a more delicate application of (5) in [3],[4], the 𝐿2-estimate (4) was improved in
the case of symmetric coefficients 𝑎𝛼𝛽(𝑦), namely,

‖(𝐴𝜀 + 1)−1−(𝐴+ 1)−1‖𝐿2(R𝑑)→𝐿2(R𝑑) ≤ 𝐶𝜀2; (7)

without the symmetry condition on coefficients, the 𝜀2-order approximation of the resol-
vent (𝐴𝜀 + 1)−1 in the operator 𝐿2-norm was found in the following form: (𝐴𝜀 + 1)−1 =
(𝐴+1)−1 + 𝜀𝒦1 +𝑂(𝜀2), where the correcting operator 𝒦1 is independent of 𝜀 (unlike its
counterpart in (5)), but is also defined in terms of solutions to the above-mentioned main
problems on the cell.

Now we are interested in 𝜀2-order approximations of the resolvent (𝐴𝜀 + 1)−1 in the
energy operator norm, i.e., (𝐿2 → 𝐻𝑚)-norm. To this end, we introduce the following
homogenized operator, slightly different from that in (3):

𝐴𝜀 = (−1)𝑚
∑︁
|𝛼|=𝑚

𝐷𝛼(
∑︁
|𝛽|=𝑚

�̂�𝛼𝛽𝐷
𝛽 + 𝜀

∑︁
|𝛿|=𝑚+1

𝑏𝛼𝛿𝐷
𝛿).

Here, the coefficients �̂�𝛼𝛽 are the same as in (3) and 𝑏𝛼𝛿 are constants defined via solutions

to the additional cell problems. It is clear that 𝐴𝜀 = 𝐴+𝜀𝐵, where the differential operator
𝐵 has order 2𝑚 + 1. One can show that the resolvent (𝐴𝜀 + 1)−1 is a bounded operator
from 𝐿2(R𝑑) to 𝐻2𝑚(R𝑑). We define the correcting operators

𝒦𝑚(𝜀) =
∑︁
|𝛾|=𝑚

𝑁𝛾(
𝑥

𝜀
)𝐷𝛾𝑆𝜀(𝐴𝜀 + 1)−1, 𝒦𝑚+1(𝜀) =

∑︁
|𝛿|=𝑚+1

𝑁𝛿(
𝑥

𝜀
)𝐷𝛿𝑆𝜀𝑆𝜀(𝐴𝜀 + 1)−1,

where we use the Steklov smoothing operator 𝑆𝜀, defined as (𝑆𝜀𝜙)(𝑥) =
∫︀
𝑌
𝜙(𝑥− 𝜀𝜔) 𝑑𝜔,

and the solutions 𝑁𝛾, |𝛾|=𝑚, and 𝑁𝛿, |𝛿|=𝑚+1, to the above-mentioned cell problems.
In [5], the following estimate is proved:

‖(𝐴𝜀 + 1)−1 + 𝜀𝑚𝒦𝑚(𝜀) + 𝜀𝑚+1𝒦𝑚+1(𝜀)− (𝐴𝜀 + 1)−1‖𝐿2(R𝑑)→𝐻𝑚(R𝑑) ≤ 𝐶𝜀2 (8)
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with the constant 𝐶 depending only on the dimension 𝑑 and constants 𝜆0 and 𝜆1 in (2).
We have 𝜀-uniform estimates (analogues of (6):

‖𝜀𝑚𝒦𝑚(𝜀)‖𝐿2(R𝑑)→𝐻𝑚(R𝑑)≤𝑐, ‖𝜀𝑚𝒦𝑚+1(𝜀)‖𝐿2(R𝑑)→𝐻𝑚(R𝑑)≤𝑐, (9)

‖𝒦𝑚(𝜀)‖𝐿2(R𝑑)→𝐿2(R𝑑)≤𝑐, ‖𝒦𝑚+1(𝜀)‖𝐿2(R𝑑)→𝐿2(R𝑑)≤𝑐. (10)

The estimates (10) show that the correcting terms in (8) cannot be transferred to the
remainder, although they contain powers 𝜀𝑚 and 𝜀𝑚+1 with 𝑚 ≥ 2. On the other hand,
simplifying (8) in view of (10), we deduce that, in the operator 𝐿2-norm, (𝐴𝜀 + 1)−1 =
(𝐴𝜀 + 1)−1 +𝑂(𝜀2), which extends (7) to the case of non-selfadjoint operators.

To prove our results, we use the shift method suggested by V.V. Zhikov in 2005.

REFERENCES

1. Pastukhova S. E. Estimates in homogenization of higher-order elliptic operators. Ap-
plicable Analysis. 2016. V. 95. P. 1449–1466.

2. Pastukhova S. E. Operator error estimates for homogenization of fourth order elliptic
equations. St. Petersburg Math. J. 2017. V. 28. № 2. P. 273“289.

3. Pastukhova S. E. 𝐿2-approximation of resolvent in homogenization of higher order el-
liptic operators. Journal of Mathematical Sciences. 2020. V. 251. № 6. P. 902“925.

4. Pastukhova S. E. Resolvent 𝐿2-approximation in homogenization of fourth order elliptic
operators. Sbornik: Mathematics. 2021 V. 212. № 1. P. 111“134.

5. Pastukhova S. E. Improved approximations of resolvent in homogenization of higher
order operators. Journal of Mathematical Sciences. 2021. V. 259. № 2. P. 230“243.

SIMULATION OF MICROFRACTURES IN BLOCKY ROCK MASSIFS
WITH THIN PLIABLE INTERLAYERS

Vladimir Sadovskii and Oxana Sadovskaya

Institute of Computational Modeling SB RAS, Krasnoyarsk, Russia

We analyze wave processes in blocky media applying different mathematical models,
wherein elastic blocks interact with each other via compliant interlayers with complex
rheological properties, taking into account cracking of a blocky structure along the inter-
layers. Material of interlayers before destruction can be elastic, viscoelastic, elastic-plastic
or porous.

Models of blocky media are used to simulate wave processes in geomechanics and
geodynamics. Such models are developed starting from the fundamental work [1], in
which, based on the analysis of an experimental material, the natural lumpiness of rocks
was established. Some basic results in this direction were obtained in [2]. As a result of
modeling, a large system of nonlinear equations is obtained, which describes the dynamics
of blocks with internal boundary conditions of their contact through interlayers. This
system occurs to be practically inaccessible for research by analytical methods, and it
requires the use of high performance computations.

Developing this approach, we construct different versions of the model [3, 4]: from the
case of elastic, viscoelastic, or plastic interlayers to the case of a porous material in inter-
layers, where the pores collapse under application of compressive stresses is considered,
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and the case of a fluid-saturated porous material. In the present contribution, the model
of a blocky medium is generalized to take into account the propagation of a system of
cracks along interlayers. Internal boundary conditions on the crack edges are formulated
as variational inequalities describing contact of blocks without friction.

As a criterion for destruction of interlayers at the initial stage we used various criteria
by the level of instantaneous stresses and strains. However, such modeling can’t be con-
sidered as adequate, since the process of dynamic destruction must include a preliminary
stage of damage accumulation. Therefore, we apply in computations the Morozov–Petrov
fracture criterion [5, 6], which is formulated in the integral form:

1

𝜏

𝑡∫︁
𝑡−𝜏

1

𝑑

𝑑∫︁
0

𝜎(𝑥, 𝜃) 𝑑𝑥 𝑑𝜃 ⩾ 𝜎𝑐 .

Here 𝜎𝑐 is the limit stress, 𝜏 is the microstructure parameter characterizing the time of
damage accumulation, 𝑑 is the block size. As an invariant of stress tensor, responsible for
micro-failure, in the case of plane interlayers the following expression is taken:

𝜎 =

√︂
4

9
𝜎2
𝑛 + 𝜎2

𝜏 ,

where 𝜎𝑛 and 𝜎𝜏 are the normal and tangential stresses.
Using MPI (Message Passing Interface) technology, parallel software is developed for

modeling the dynamics of blocky media with cracks in 2D formulation. Results of compu-
tations of the cracks growth caused by the rotation of blocks under the action of external
pulse loads are presented.

Figure 1 demonstrates the crack propagation process in a blocky rock massif under
intensive Π-shaped pulse loading at the central part of upper boundary. Computations
were performed for the blocky massif consisting of 100 layers with 200 elastic-plastic blocks
in each layer (10×10 cm is the size of each one) and pliable interlayers of thickness 1mm.

Figure 1: Configuration of fracture zones in the interlayers at different time moments

The clusters of the MVS series of the Institute of Computational Modeling SB RAS
(Krasnoyarsk) and the Joint Supercomputer Center of the Russian Academy of Sciences
(Moscow) were used for computations.
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EVOLUTIONARY VARIATIONAL INEQUALITIES OF ELLIPTIC TYPE
WITH IRREVERSIBILITY AND ENERGY BALANCE

Kotaro Sato

Tohoku Univ., Sendai, Japan

The Ambrosio-Tortorelli functional 𝐴𝑇𝜀(𝑢, 𝑧) is well known as a regularization of the
Francfort-Marigo functional, which is introduced to describe crack initiation and propa-
gation in brittle materials. Here 𝑢 and 𝑧 represent a displacement field and a phase field,
respectively, in a brittle material Ω ⊂ R𝑁 . A phase field 𝑧 = 𝑧(𝑥, 𝑡) with values in [0, 1]
is introduced to regularize the surface energy of crack sets, which is given as the lower-
dimensional Hausdorff measure in the original Francfort-Marigo functional. We assume
that crack occurs at points where 𝑧 is close to 0, while there is no damage at points where
𝑧 is close to 1. In [2], Giacomini constructed a flow of the displacement and phase fields
in the frame for quasistatic evolution of cracks, as a continuous limit of a sequence of
minimizers for 𝐴𝑇𝜀. Moreover, the flow satisfies the following three principles intrinsic
to quasistatic evolution of cracks: irreversibility, quasistatic equilibrium and energy con-
servation law. On the other hand, several PDE models have also been studied; however,
their solutions violate some of these principles due to some regularizations.

In this talk, we shall discuss the nonlinear PDE,

𝜕𝐼(−∞,0] (𝜕𝑡𝑧)−Δ𝑧 + 𝜎𝑧 ∋ 𝑓 in Ω× (0, 𝑇 ), (1)

where 𝑇 > 0 is a constant, Ω ⊂ R𝑁 is a bounded Lipschitz domain, 𝑓 = 𝑓(𝑥, 𝑡) and
𝜎 = 𝜎(𝑥, 𝑡) are given functions and 𝜕𝐼(−∞,0] denotes the subdifferential operator of the
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indicator function 𝐼(−∞,0] supported on (−∞, 0]. Problem (1) is derived by a significant
simplification of phase-field models for brittle fracture. However, its solution still fulfills
the three principles mentioned above. Moreover, we note that (1) is equivalent to an
evolutionary elliptic variational inequality.

Main results of this talk consist of two theorems: One is concerned with the well-
posedness of problem (1) equipped with certain boundary and initial conditions under
some assumptions on given data. The other one is concerned with the aforementioned
three principles, which are originally used to characterize quasistatic evolution of cracks.
In order to construct solutions to (1), we exploit a similar approximation of the equation
to [1], where some parabolic equation with irreversibility is concerned; however, we shall
employ a different strategy from [1] to derive energy estimates for (1), which is indeed an
elliptic equation rather than parabolic one. Moreover, asymptotic behaviors of solutions
as 𝑡→ ∞ will also be discussed, if time permits.

This talk is based on a joint work with Prof. Goro Akagi (Tohoku University). This
work is partially supported by JSPS KAKENHI Grant Number 21J20732.
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MULTIPHYSIC IMPERFECT INTERFACES MODELS: ASYMPTOTIC
ANALYSIS AND NUMERICAL VALIDATION

Michele Serpilli

Department of Civil and Building Engineering, and Architecture, Università Politec-
nica delle Marche, Ancona, Italy

In the last decades, the interest in bonded structures, obtained by assembling differ-
ent parts made of possibly different materials to compose a unique structure, is strongly
increased. The advantage of such composites is that their mechanical performances and
properties are designed to be superior to those of the constituent materials acting inde-
pendently. In the present study, the attention is focused on a specific type of composite,
constituted by two media, called the adherents, bonded together with a thin interphase
layer, called the adhesive. The composite constituents are made of different linear mul-
tiphysic materials with highly contrasted constitutive properties. The study considers a
generic multiphysic coupling in a very general framework and can be adapted to well-
known multiphysic behaviors, such as piezoelectricity, thermo-elasticity, as well as to
multifield microstructural theories, such as micropolar elasticity. The analysis has been
carried out by means of asymptotic expansions method. By defining a small parameter 𝜀,
associated with the thickness and constitutive properties of the middle layer, an asymp-
totic analysis is performed. The middle layer thickness depends linearly on 𝜀, while the
multiphysic stiffness ratios between the adherents and the adhesive depend on 𝜀𝑝. Three
different limit models and their associated limit problems are characterized: the soft inter-
face model, in which the constitutive coefficients depend linearly on 𝜀; the hard interface
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model, in which the constitutive properties are independent of 𝜀; the rigid interface model,
in which they depend on 1/𝜀. The asymptotic expansion method is reviewed by taking
into account the effect of higher order terms and by defining a general multiphysic in-
terface law which comprises the above aforementioned models. Finally, some numerical
examples are given in order to show the efficiency of the proposed methodology in the
case of piezoelectric and thermo-mechanical couplings. The numerical investigations are
performed in the framework of the finite element method. In particular, finite elements
are introduced to solve the fully 3D initial problem, considering a three-phase compos-
ite, and the limit 3D-2D problem with two layers with imperfect interface transmission
conditions.

REGULARITY OF MINIMIZERS FOR PLATES WITH COHESIVE
CRACKS

Viktor Shcherbakov

Institute of Mathematics, University of Kassel, Kassel, Germany
Lavrentyev Institute of Hydrodynamics, Novosibirsk, Russia

We present some higher regularity results in Besov spaces for the minimizers in a vari-
ational model for Kirchhoff–Love elastic plates with vertical through cracks that accounts
for a noninterpenetration constraint as well as cohesive forces acting between the crack
faces.

OBSERVABILITY INEQUALITIES FOR ADVECTION EQUATIONS

Hiroshi Takase

Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo, Japan

Let Ω ⊂ R𝑑 be a bounded domain with smooth boundary 𝜕Ω. We define the first-order
hyperbolic operator 𝑃 := 𝜕𝑡 + 𝐻(𝑡) · ∇ for a vector-valued function 𝐻 ∈ 𝐶1([0, 𝑇 ];R𝑑)
and consider the Cauchy problem for a given 𝑔 ∈ 𝐿2(𝜕Ω× (0, 𝑇 )):{︃

𝑃𝑢 = 𝜕𝑡𝑢+𝐻(𝑡) · ∇𝑢 = 0 in Ω× (0, 𝑇 ),

𝑢 = 𝑔 on 𝜕Ω× (0, 𝑇 ).

We investigate a problem determining an initial value 𝑢(·, 0) from the Cauchy data 𝑔 in
𝐿2 frameworks. I will show some results regarding uniqueness and stability for both cases
when 𝐻 is non-degenerate and degenerate. If time permits, I will mention observability
inequalities for first-order symmetric hyperbolic systems as well.

These are joint works with Professor Masahiro Yamamoto (The University of Tokyo)
and Professor Giuseppe Floridia (Mediterranea University of Reggio Calabria).
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2. G. Floridia and H. Takase, Observability inequalities for degenerate transport equa-
tions. to appear in J. Evol. Equ.
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ON THE JERKY CRACK GROWTH IN ELASTO-PLASTIC MATERIALS

Rodica Toader

University of Udine, Udine, Italy

The purpose of this talk is to show that in some elasto-plastic materials cracks can
grow only in an intermittent way. We consider a model for the quasistatic crack growth
in pressure-sensitive elasto-plastic materials in the planar case and study the properties
of the length ℓ(𝑡) of the crack as a function of time. Under suitable technical assumptions
on the crack path, we show that the monotone function ℓ is a pure jump function. This
result was obtained in collaboration with G. Dal Maso, SISSA, Trieste, Italy.

REFERENCES

1. Dal Maso G., Toader R. On the jerky crack growth in elastoplastic materials Calc.
Var. Partial Differential Equations (2020) 59:107 https://doi.org/10.1007/s00526-020-
01752-2.

2. Dal Maso G., Toader R. On the pure jump nature of crack growth for a class
of pressure-sensitive elasto-plastic materials Nonlinear Anal. 214 (2022), Paper No.
112539, https://doi.org/10.1016/j.na.2021.112539.

ON DETERMINATION OF COEFFICIENT OF ELLIPTIC EQUATION
VIA SINGLE PARTIAL BOUNDARY MEASUREMENT

Igor Trushin

Shinshu University, Japan

We investigate an inverse problem to identify coefficient of elliptic equation via single
Dirichlet-Neumann partial boundary measurement in the case of rectangular (cubic) do-
main and conductivity depending on only one variable. Joint work with H.Kang (Inha
University, Korea) and J-Y.Lee (Ewha Womans University, Korea)
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METHODS OF THE KANTOROVICH-VLASOV TYPE FOR THE
ANALYSIS OF POROUS FUNCTIONAL-GRADIENT NANOPLATES

TAKING INTO ACCOUNT PHYSICAL NONLINEARITY SUBJECTED
TO TEMPERATURE FIELD

T.V. Yakovleva1, A.V. Krysko1,2, L.A. Kalutsky1, V.A. Krysko1

1Yuri Gagarin State Technical University of Saratov, Saratov, Russia
2Laboratory of 3D Structural and Functional Engineering, Moscow State University
of Technology STANKIN, Moscow, Russia

Mathematical model of Kirchhoff nanoplates made of a porous functionally graded
material (PFGM) subjected to temperature are derived. For modeling size-dependent
factors of the composite nanoplate, modified couple stress theory [1] was use. Lagrange
principle is used for obtaining the governing equations of the composite nanoplate. The
temperature field is determined from the solution of the three-dimensional heat conduction
equation by the finite element method. We consider the special case when the Young’s
modulus 𝐸 = 𝐸(𝑧, 𝑒𝑖) and the Poisson ratio 𝜈 = 𝜈(𝑧, 𝑒𝑖) are functions of the thickness
variable 𝑧 and the intensity of deformation 𝑒𝑖. The distributions of porosity are given
respectively by three different types of porosity [2], in which the porosity and FG of the
material plate are defined using the power functions: (i) uniform porosity (U-PFGM),
(ii) reduced porosity from the top and bottom surfaces to the center (X-PFGM), and (iii)
increased porosity at the top and bottom (the surfaces shown in Fig. 2 are viewed down to
the center (O-PFGM)). The Poisson ratio and Young’s modulus of a porous functionally
graded material (PFGM) of a nanoplate associated with different porosity distributions
can be described in the following ways:

Figure 2: Schemes of porous material

i) For U-PFGM pattern:

𝐸(𝑧, 𝑒𝑖) = (𝐸𝑐 − 𝐸𝑚(𝑧, 𝑒𝑖))(1/2 + 𝑧/ℎ)𝑘 + 𝐸𝑚(𝑧, 𝑒𝑖)− (𝐸𝑐 + 𝐸𝑚(𝑧, 𝑒𝑖))Γ
*/2,

𝜈(𝑧, 𝑒𝑖) = (𝜈𝑐 − 𝜈𝑚(𝑧, 𝑒𝑖))(1/2 + 𝑧/ℎ)𝑘 + 𝜈𝑚(𝑧, 𝑒𝑖)− (𝜈𝑐 + 𝜈𝑚(𝑧, 𝑒𝑖))Γ
*/2,

𝛼𝑇 (𝑧, 𝑒𝑖) = (𝛼𝑇𝑐 − 𝛼𝑇𝑚(𝑧, 𝑒𝑖))(1/2 + 𝑧/ℎ)𝑘 + 𝛼𝑇𝑚(𝑧, 𝑒𝑖)− (𝛼𝑇𝑐 + 𝛼𝑇𝑚(𝑧, 𝑒𝑖))Γ
*/2,

(1)

ii) X-PFGM pattern:

𝐸(𝑧, 𝑒𝑖) = (𝐸𝑐 − 𝐸𝑚(𝑧, 𝑒𝑖))(1/2 + 𝑧/ℎ)𝑘 + 𝐸𝑚(𝑧, 𝑒𝑖)− (𝐸𝑐 + 𝐸𝑚(𝑧, 𝑒𝑖))(1/2− |𝑧|/ℎ)Γ*,

𝜈(𝑧, 𝑒𝑖) = (𝜈𝑐 − 𝜈𝑚(𝑧, 𝑒𝑖))(1/2 + 𝑧/ℎ)𝑘 + 𝜈𝑚(𝑧, 𝑒𝑖)− (𝜈𝑐 + 𝜈𝑚(𝑧, 𝑒𝑖))(1/2− |𝑧|/ℎ)Γ*,

𝛼𝑇 (𝑧, 𝑒𝑖) = (𝛼𝑇𝑐 − 𝛼𝑇𝑚(𝑧, 𝑒𝑖))(1/2 + 𝑧/ℎ)𝑘 + 𝛼𝑇𝑚(𝑧, 𝑒𝑖)− (𝛼𝑇𝑐 + 𝛼𝑇𝑚(𝑧, 𝑒𝑖))(1/2− |𝑧|/ℎ)Γ*,
(2)
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iii) O-PFGM pattern:

𝐸(𝑧, 𝑒𝑖) = (𝐸𝑐 − 𝐸𝑚(𝑧, 𝑒𝑖))(1/2 + 𝑧/ℎ)𝑘 + 𝐸𝑚(𝑧, 𝑒𝑖)− (𝐸𝑐 + 𝐸𝑚(𝑧, 𝑒𝑖))|𝑧|Γ*/ℎ,

𝜈(𝑧, 𝑒𝑖) = (𝜈𝑐 − 𝜈𝑚(𝑧, 𝑒𝑖))(1/2 + 𝑧/ℎ)𝑘 + 𝜈𝑚(𝑧, 𝑒𝑖)− (𝜈𝑐 + 𝜈𝑚(𝑧, 𝑒𝑖))|𝑧|Γ*/ℎ,

𝛼𝑇 (𝑧, 𝑒𝑖) = (𝛼𝑇𝑐 − 𝛼𝑇𝑚(𝑧, 𝑒𝑖))(1/2 + 𝑧/ℎ)𝑘 + 𝛼𝑇𝑚(𝑧, 𝑒𝑖)− (𝛼𝑇𝑐 + 𝛼𝑇𝑚(𝑧, 𝑒𝑖))|𝑧|Γ*/ℎ,

(3)

In the above, Γ* represents indicator of porosity [2], 𝜈𝑐, 𝜈𝑚- the Poisson ratio, 𝐸𝑐, 𝐸𝑚 -
Young’s modulus and 𝛼𝑇𝑐, 𝛼𝑇𝑚 stands for the thermal expansion coefficients associated with
the ceramic and metal phases functionally graded material (FGM), k represents the gradient
index of material property. It shows the ratio of the volumetric fractions of the material (in
particular, ceramics at the top and metal at the bottom). If 𝑘 = 0, then no pores. The power
coefficient 𝑘 takes the values 0.2 ≤ 𝑘 ≤ 5. where as 𝐸𝑐 = 210𝐺𝑃𝑎, 𝐸𝑚 = 70𝐺𝑃𝑎, 𝜈𝑐 = 0.24,
𝜈𝑚 = 0.35, 𝛼𝑇𝑐 = 23 · 10−610𝐶, 𝛼𝑇𝑚 = 24 · 10−610𝐶, and we fixed Γ* = 0.4, 𝑘 = 1 while carrying
the numerical simulation.

The presented experimental data refer to the case of an elastic material. In the above
formulas (1 - 3), a new assumption was presented. Namely, the metal has the property of physical
nonlinearity. According to the deformation theory of plasticity, information is required about
dependencies stress intensity from deformations 𝜎𝑖(𝑒𝑖). For porous nanoplates, Kantorovich -
Vlasov Methods (KVM), Variational Iteration Method (VIM), Vaindiner Method (VaM) and
Agranovskii-Baglai-Smirnov (ABSM) are applied [3]. At each step of loading, the iterative
procedure of the method of variable parameters of elasticity Birger [4] was constructed. Thus,
at each loading step, we got 3 iterations, nested one into the other. This gives possibility get
reliable solution for porous functional-gradient nanoplates, which most closely describe the real
working conditions.
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