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Theoretical background Overview

General Background

Intrusion Detection System
An intrusion detection system or IDS is a software/hardware
tool used to detect unauthorized accesses to a computer
system or a network

Anomaly based IDS
Identifies intrusions by classifying activity as either
anomalous or normal
Needs a training phase to recognize normal activity
Able to detect “new” attacks
Generates more false alarms than a misuse based IDS
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Theoretical background Overview

Anomaly based IDS

Key elements of an Anomaly based IDS
Statistical method
Aggregation level of the input data
Information used for detection

Information theoretic approaches
Different definitions of entropy
Different level of data aggregations and interpretation of
the entropy

Randomly aggregated data: entropy of a distribution
Flow level analysis: entropy of a string

Different traffic descriptor (for the aggregated data)
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Theoretical background Basic definitions

Shannon entropy

Discrete distributions P, Q with a finite number L of elements
Entropy of a RV X (or of its distribution P), often called Shannon entropy

H(X ) = −
L∑

l=1

pl log2 pl = E
[
− log2 P(X )

]
where P =

{
p1, p2, . . . , pL

}
is the probability distribution of X

0 ≤ pl ≤ 1 and
L∑

l=1

pl = 1

H(X ) is a measure of the uncertainty (or variability) associated with the
RV X

0 ≤ H(X ) ≤ log2 L

The infimum corresponds to the degenerate distribution (i.e.,
pl = δk−l for some k ∈ [1, L])
The supremum is attained in case of uniform distribution (i.e.,
pl = 1/L ∀l)
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Theoretical background Basic definitions

Beyond Shannon

In anomaly detection, entropy can be used to “summarize” the
distribution of specific traffic features⇒ variations between its values
for Pcur and Pref

Shannon entropy weights each pl according to its logarithm

H(X ) = −
L∑

l=1

pl log2 pl = E
[
−log2 P(X )

]
If the natural logarithm is is used, well-known Boltzman–Gibbs
entropy in statistical mechanics

More general definitions of entropy that provide additional information
about the importance of specific events

An additional parameter must be introduced
Generalised entropies: Tsallis and Rényi entropies

Measure the difference between the two probability distribution
Relative entropy between two distributions
Kullback–Leibler divergence and its symmetrized version,
Jensen–Shannon divergence
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Theoretical background Basic definitions

Tsallis entropy

Sq(X ) =
1−

∑L
l=1 pq

l
q − 1

q ∈ R is the nonextensivity parameter or entropic index
q → 1 ⇒ usual Boltzmann–Gibbs entropy
Sq(X ) = 0 in case of degenerate distribution
The maximum is attained in case of uniform distribution

Smax
q =

1− L1−q

q − 1

When q assumes large positive values, Sq(X ) is more sensitive to
events that occur often
For large negative q rare events contribute more
If two systems A and B are independent (i.e., pA+B

lm = pA
l · pB

m), then

Sq(A + B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B)
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Theoretical background Basic definitions

Rényi entropy of order α

Hα(X ) =
1

1− α
log2

(
L∑

l=1

pα
l

)
α ≥ 0 α 6= 1

In general, it is a non-increasing function in α, apart from the case of
uniform distribution (when Hα(X ) = log2 L ∀α)

H0 is the Hartley entropy of X:

H0(X ) = log2 L

the limiting value of Hα as α→ 1 is the standard Shannon entropy

H1(X ) = H(X ) = −
L∑

l=1

pl log2 pl

as α→∞, Hα converges to the min-entropy

H∞(X ) = min
l
(− log pl) = − log max

l
pl
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Theoretical background Basic definitions

Relative entropies

Kullback–Leibler divergence of Q from P

DKL(P‖Q) =
L∑

l=1

pl log
pl

ql

under the assumption of absolute continuity: ql = 0 implies pl = 0 ∀l

DKL(P‖Q) ≥ 0 and equality holds iff P = Q almost everywhere

Rényi divergence of order α (or α-divergence)

Dα(P‖Q) =
1

α− 1
log

(
L∑

l=1

pα
l

qα−1
l

)

Jensen–Shannon divergence

DJS = 1
2 DKL (P‖M) + 1

2 DKL (Q‖M)

where M is the average of the two distributions, i.e.

M =
1
2
(P + Q)
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Theoretical background Basic definitions

Chaitin-Kolmogorov entropy

Symbols in a message are, in general, correlated and so
the information carried by each symbol is less than the
Shannon entropy of the corresponding alphabet
The entropy of a string is the length (in bits) of the smallest
program which produces as output the string
The entropy represents a lower bound to the compression
rate that we can obtain
Different compression algorithms can be considered

Dictionary–based algorithms
Model–based algorithms (of different order)
Block–sorting algorithms

The entropy can be used to detect the language of a given
plain text
The presence of anomalies should affect the entropy of the
related traffic sequence
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Entropy for histogram comparison Motivations

The main idea. . .

Histograms of significant features should significantly
change between normal and anomalous behavior
The idea is simple, BUT:

which are the significant traffic features?
how to measure significant changes between histograms?

Histogram-Based Traffic Anomaly Detection

A. Kind, M. Ph. Stoecklin, and X. Dimitropoulos, IEEE
Transactions on Network Service Management, Vol. 6, No. 2,
June 2009
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Entropy for histogram comparison System Design
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Entropy for histogram comparison System Design

System Input

The proposed system takes as input traffic data over a
predefined time-bin
For each time-bin the system extracts a list of keys it (e.g.,
the list of destination IP addresses) and the associated
weights ct (in our case, the number of bytes and flows for
that IP address)

Turnstile Model

Input data: I = {σ1, σ2, . . . , σn}
Item σk :

key ik
weight ck

Underlying function: U[ik ]+ = ck
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Entropy for histogram comparison System Design
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Entropy for histogram comparison System Design

Sketch

Definition
Sketches are two-dimensional D×W arrays T [l][j], where each
row d (d = 1, · · · ,D) is associated to a given hash function hd .
These functions give outputs in the interval (1, · · · ,W ) that are
associated to the columns of the array

(   ,    )i

+c

+c

+c

k

k

k

h
1

h
D

+ck

k kc

D

W

. . .
1            2           3  n

Update procedure

C[d ][hd(ik )]+ = ck
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Entropy for histogram comparison System Design

3-D Sketch

Sketches are modified to store histograms T [d ][w ][l]
A second hashing scheme is used to map input keys to
histogram bins⇒ Random Histogram

unknown range of relevant variables
possibility of highly-peaked distributions (e.g., number of
bytes)
additional protection against “mimicry” attacks
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Entropy for histogram comparison System Design

3-D Sketch

Sketches ∈ ND×W×L, where D, W , and L can be varied (in
the experimental tests D = 16, W = 512, and L = 96)
Formally, for each new data, the update procedure of the
sketch is described by

Method 1: T [d ][h1
d(ik )][h

2
d(ik )]← T [d ][h1

d(ik )][h
2
d(ik )] + ck

Method 2: T [d ][h1
d(ik )][h

2
d(ck )]← T [d ][h1

d(ik )][h
2
d(ck )] + 1

+ c k

l

d

2
i k    (   )h

l

+ 1

d

2
ck    (   )h
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Entropy for histogram comparison Anomaly Detection
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Entropy for histogram comparison Anomaly Detection

Anomaly Detection

N distinct sketches T n
D×W×L, where n ∈ [1,N] denotes the

time-bin
Inputs to the anomaly detection block

the current sketch T n

the reference sketch T ref, i.e. the last observed non
anomalous sketch

For each bucket T n[d ][w ][·], the system compare the
entropy of the stored histogram with the entropy of
T ref[d ][w ][·] or calculate the divergence between the two
histograms
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Entropy for histogram comparison Anomaly Detection

Detection and Identification

If entropy difference exceeds a given threshold the
correspondent sketch bucket is labeled as anomalous

thresholds are set via Monte-Carlo simulation
binary matrix (A ∈ ND×W ) that contains a “1” if the bucket is
considered anomalous

Each traffic flow is part of D random aggregates,
corresponding to the D different hash functions
A voting algorithm is applied to the matrix A

if at least K rows of A contain at least one bucket set to “1”,
the time-bin is considered as anomalous and an alarm is
generated
otherwise T ref is updated
K is a tunable parameter and it has been set K = D/2 + 1

Anomaly identification is performed by exploiting the
reversible sketch functionalities
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Entropy for histogram comparison Experimental Results

MAWI-Lab Traffic Traces

MAWI (Measurement and Analysis on the WIDE Internet)
archive (sample-points B and F)
Anomaly labelling is obtained combining the output of four
anomaly detectors

Hough transform
Gamma distribution modelling
Kullback-Leibler divergence
Principal Component Analysis

MAWILab : Combining Diverse Anomaly Detectors for
Automated Anomaly Labeling and Performance Benchmarking

R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, ACM
CoNEXT 2010
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Entropy for histogram comparison Experimental Results

MAWI-Lab Traffic Traces

Traffic taxonomy
anomalous: anomalous with high probability
suspicious: probably anomalous, but not clearly identified
by the MAWI classification methods
notice: non anomalous, but reported by at least one
anomaly detector
benign: normal

Some information about the kind of anomaly
attack: anomalies representing a well known attack
special: anomalies involving well known ports
unknown: unknown kinds of anomalies

Performance indicators
ROC (Receiver Operating Characteristics) curve: Detection
Rate vs. False Alarm Rate
AuC (Area under the Curve)
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Entropy for histogram comparison Experimental Results

Interpretation of the MAWILab labels

False positives: flows that are not labeled as “anomalous”
or “suspicious” in the MAWI archive
False negatives

all: flows labeled as “anomalous”
fn 2/3/4 detector: flows labeled as “anomalous” and
detected at least by two/three/four detectors
fn attack: flows labeled as “anomalous” belonging to the
“attack” category (known attacks)
fn attack special: flows labeled as “anomalous” belonging to
the “attack” category or the “special” category (attacks
involving well-known ports)
fn unknown: flows labeled as “anomalous” belonging to the
“unknown” category (unknown anomalous activities)
fn unknown 4 detector: flows labeled as “anomalous”
belonging to the “unknown” category and detected by all
the four detectors
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Entropy for histogram comparison Experimental Results

Preliminary Analysis: different traffic features

Scatter Plot - H(Byte) vs. H(Flow)
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Entropy for histogram comparison Experimental Results

Shannon Entropy: Method 1 – Flow
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Entropy for histogram comparison Experimental Results

Shannon Entropy: Method 2 – Flow
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Entropy for histogram comparison Experimental Results

Shannon Entropy: Method 1 – Byte
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Entropy for histogram comparison Experimental Results

Shannon Entropy: Method 2 – Byte
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Entropy for histogram comparison Experimental Results

Shannon, KL, JS: Method 2 – Byte
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Entropy for histogram comparison Experimental Results

Tsallis Entropy: Method 2 – Byte
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Entropy for histogram comparison Experimental Results

Rényi Entropy: Method 2 – Byte
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Entropy for histogram comparison Experimental Results

Method 2 – Byte
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Entropy for histogram comparison Experimental Results

Method 2 – Packet
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Entropy for histogram comparison Experimental Results

Method 2 – Flow
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Analysis of TCP connections Motivations

Related Works

Traffic Classification based on the TCP flags

A Markovian signature-based approach to IP traffic classification
H. Dahmouni, S. Vaton, D. Rossé
3rd annual ACM workshop on Mining network data, 2006

Anomaly Detection based on the TCP flags

A New Statistical Approach to Network Anomaly Detection
C. Callegari, S. Vaton, and M. Pagano
International Symposium on Performance Evaluation of Computer and
Telecommunication Systems, 2008

Language Classification through entropy

Language trees and zipping
D. Benedetto, E. Caglioti, and V. Loreto
Physical Review Letters, January 2002
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Analysis of TCP connections System Design

System Architecture
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Analysis of TCP connections System Design

System Input

Input Data

The system input is given by raw traffic traces in libpcap format

Only TCP packets are passed as input to the classification block

The 5-tuple

(Src. address, Dest. address, Src. Port, Dest. Port, Protocol)

is used to identify a connection, while the value of the TCP flags is used
to build the profile

A value si is associated to each packet:

si = SYN + 2 · ACK + 4 · PSH + 8 · RST + 16 · URG + 32 · FIN

Each mono-directional connection is represented by a sequence of
symbols si , which are integers in {0, 1, · · · , 63}
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Analysis of TCP connections System Design

Compression Algorithms

Dictionary–based algorithms: based on the use of a dictionary, which
can be static or dynamic, and they code each symbol or group of
symbols with an element of the dictionary

LZ77
LZ78 (LZW)

Model–based algorithms: each symbol or group of symbols is encoded
with a variable length code, according to some probability distribution

static coders (Morse code)
semi–adaptive coders: the translation table has to be sent
together with compressed data (static Huffman Coding)
dynamic coders: the translation table is directly built during
encoding/decoding (Dynamic Markov compression)

Block–sorting algorithms: a transformation of the data is performed, so
as to obtain a format which can be easily compressed

Burrows-Wheeler transform (bzip2)
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Analysis of TCP connections System Design

Lempel-Ziv-Welch

Created by Abraham Lempel, Jacob Ziv, and Terry Welch.
It was published by Welch in 1984 as an improved
implementation of the LZ78 algorithm, published by
Lempel and Ziv in 1978
Universal adaptative (the coding scheme used for the k th

character of a message is based on the characteristics of
the preceding k − 1 characters in the message) lossless
data compression algorithm
Builds a translation table (also called dictionary) from the
text being compressed
The string translation table maps the message strings to
fixed-length codes
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Analysis of TCP connections System Design

Huffman Coding

Developed by Huffman (1952)
Based on the use of a variable-length code table for
encoding each source symbol
The variable-length code table is derived from a binary tree
built from the estimated probability of occurrence for each
possible value of the source symbols

It expresses the most common characters using shorter
strings of bits than are used for less common source
symbols
Prefix-free code: the bit string representing some particular
symbol is never a prefix of the bit string representing any
other symbol
Although optimal among methods encoding symbols
separately, Huffman coding is not always optimal among all
compression methods
Other methods such as arithmetic coding often have better
compression capability
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Analysis of TCP connections System Design

Dynamic Markov Compression

Developed by Gordon Cormack and Nigel Horspool (1987)
Adaptative lossless data compression algorithm
Based on the modelization of the binary source to be
encoded by means of a Markov chain, which describes the
transition probabilities between bits
The built model is used to predict the future bit of a
message
The predicted bit is then coded using arithmetic coding
Arithmetic coding encodes the entire message into a single
number, an arbitrary-precision fraction q where
0.0 ≤ q ≤ 1.0
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Analysis of TCP connections System Design

bzip2

bzip2
Open source, patent free, high-quality data compressor
Higher compression rate wrt to more conventional
LZ77/LZ78-based compressors
Much more complex and considerably slower

Structure of the encoder
An input file is divided into fixed sized blocks that are
compressed independently, by applying three transformations

Burrows-Wheeler transform (block-sorting lossless transformation)

Move-to-front transform (continuously evolving coding table, that is a list
of all possible characters in a specific order)

Lossless Compression (Huffman)
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Analysis of TCP connections System Design

Training Phase

Possibility to choose the compression algorithm
The learning phase (i.e., building of the normal data
model) is stopped as the training phase is over

Learning phase for the different compressors

Huffman case: the occurrence frequency of each symbol

DMC case: the estimation of the Markov chain used for the
compression

LZW case: the construction of the dictionary

bzip2 case: the final Huffman phase is modified as above

The detection phase is performed with a compression
scheme that is optimal for the training data and suboptimal
for the new data, especially in case of anomalous
connections
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Analysis of TCP connections System Design

Detection Phase

Append each distinct “observed” connection b to the
training dataset A
Compute the ratio

X =
length([A|b]∗)− length([A]∗)

length(b)

where [S]∗ represents the compressed version of S
Choose between a single hypothesis H0 (normal traffic)
and the composite hypothesis H1 (anomaly)

X
H0
≶
H1

ξ

M. Pagano Entropy approaches to detecting attacks 47 / 51



Analysis of TCP connections Experimental Results

Dataset and Performance Parameter

DARPA

1999 DARPA/MIT IDS evaluation program

It provides a corpus of data, modelling the network traffic measured
between a US Air Force base and the Internet

5 weeks data (several thousands connections per application)

week 1 and 3: used for training
week 4 and 5: used for detection

Receiver Operating Characteristic (ROC)

20/TCP (FTP data)

22/TCP (Secure Shell)

In DARPA dataset we can trust the port number for classifying the traffic
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Analysis of TCP connections Experimental Results

ROC curve - 20/TCP
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Analysis of TCP connections Experimental Results

ROC curve - 22/TCP
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Conclusions
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