К ВОПРОСУ РУДООБРАЗОВАНИЯ СКАНДИЯ ПРИ ЛИКВАЦИИ СИЛИКАТНЫХ РАСПЛАВОВ

В.К. Черепанова^{1,2}, А.Н. Черепанов¹

¹Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, 630090, Новосибирск, Россия ²Новосибирский государственный технический университет, 630073, Новосибирск, Россия

Ликвация силикатных магматических расплавов может приводить к формированию минеральных отложений редкоземельных элементов. Особый интерес среди них представляет скандий, как элемент почти не имеющий собственных промышленных месторождений. Авторами на примере квазибинарной системы $SiO_2 - Sc_2O_3$. рассмотрен процесс охлаждения и последующего затвердевания ликвирующего силикатного расплава в интрузивной камере. При этом за основу были взяты идеи, ранее успешно реализованные для системы $Fe_2SiO_4 - FeS [1, 2]$.

По достижении температуры ликвации в системе происходит расслоение, то есть исходная гомогенная жидкость распадается на две жидкие фазы: матричную (SiO₂) и примесную (Sc₂O₃), представленную в виде однородно распределенных капель (рис. 1). В рассматриваемой квазибинарной системе SiO₂ – Sc₂O₃ плотность второй жидкости больше, чем первой. Поэтому в зависимости от положения в магматической камере рассматриваемых областей расплава, примыкающих к нижнему или верхнему контакту с вмещающей породой, каплевидные включения второй фазы будут двигаться либо навстречу фронту кристаллизации первичной (матричной) жидкости, либо вглубь массива. Соответственно, эти капли могут расти, попадая в более холодную, а значит имеющую большее пересыщение, область расплава, или, в противном случае, растворяться.

Рис. 1. Схема затвердевания полуограниченного массива магмы с областью ликвации расплава. Z_{sep} – координата фронта расслоения, Z_{sol} – координата фронта затвердевания, T_{sol} – температура затвердевания первой (матричной) жидкости, T_{sep} – температура расслоения, T_r – температура вмещающей породы, T_0 – исходная температура расплава.

© В.К. Черепанова, А.Н. Черепанов, 2015

274

и расслоения \dot{Z}_{sep} (кривая 2) (*a*) и координат фронтов кристаллизации Z_{sol} (кривая 1) и расслоения Z_{sep} (кривая 2) (*б*) от времени в квазибинарной системе SiO₂ – Sc₂O₃.

Пусть ликвирующий магматический расплав занимает полуограниченный горизонтальный массив, который либо внизу, либо вверху контактирует с более холодной вмещающей породой. В результате теплообмена на их контакте в системе идет процесс охлаждения и последующего затвердевания, фронт кристаллизации при этом движется вглубь массива (см. рис. 1).

Авторами предложена математическая модель сопряженного перемещения фазовых фронтов в такой системе, имеющая автомодельное решение. На его основе определены скорости перемещения фронтов (рис. 2a) и ширина области расслоения (рис. 2b). Полученные результаты позволяют теперь перейти к задаче собственно расслоения и формирования капель второй фазы внутри матричного расплава, а также количественно оценить условия захвата этих капель фронтом затвердевания.

Для решения задачи ликвации расплава использована физико-математическая модель флуктуационного зарождения и диффузионного роста дисперсных капель примесной фазы. Это позволило получить количественные оценки размеров и количества включений в единице объема затвердевшей породы в зависимости от условий затвердевания и исходного состава расплава (рис. 3).

Далее, чтобы рассчитать скорость движения капли в матричном расплаве, был использован подход, основанный на соотношении сил тяжести, Архимеда, Стокса и силы расклинивающего давления, действующих на частицу. Таким образом удалось определить условия захвата капель фронтом затвердевания с учетом эффекта смачивания.

Рис. 3. Зависимость начального радиуса зародыша $R_0(a)$, конечного размера жидкой частицы R_d и расстояния между центрами капель $Y(\delta)$ от скорости охлаждения v_T в системе SiO₂ – Sc₂O₃ при $\sigma_{L_1L_2} = 0,05$ H/м (1), $\sigma_{L_1L_2} = 0,07$ H/м (2).

Предложенная математическая модель позволяет рассчитывать размеры и количество включений в единице объема затвердевшей породы в зависимости от условий затвердевания и исходного состава расплава. При этом определяющую роль играет скорость кристаллизации магмы и в меньшей степени это зависит от характера смачивания поверхности растущих кристаллов. Опираясь на результаты расчетов, можно предполагать, что на начальном этапе охлаждения системы будет происходить захват мелких (~ 10^{-9} м) жидких включений второй фазы (Sc₂O₃) фронтом затвердевания матричной жидкости (SiO₂). После выхода процесса затвердевания на квазистационарный режим размер жидких включений второй фазы, сформировавшихся за счет диффузионных процессов, будет возрастать до величины порядка $2 \cdot 10^{-4}$ м. При дальнейшем охлаждении системы такие включения закристаллизуются по достижении своей температуры затвердевания.

СПИСОК ЛИТЕРАТУРЫ

1. Шарапов В.Н., Черепанов А.Н., Черепанова В.К., Жмодик А.С. К динамике роста капель рудных расплавов в охлаждающейся базитовой жидкости // Геохимия. 2000. № 12. С. 1294 – 1304.

2. Черепанов А.Н., Черепанова В.К., Шарапов В.Н. Динамика фронтов кристаллизации, ликвирования и кипения у верхнего контакта плоских интрузивных тел // Доклады АН. 2004. Т. 396. № 4. С. 535 – 540.