(n,p,m) METRIC SPACES

For positive integers n,m with n>m and a subset ρ of the nth symmetric power M⁽ⁿ⁾ of a set M, such that $\Delta_n = \{ (x, ..., x) \mid x \in M \} \subseteq \rho$, a map d from M⁽ⁿ⁾ into the set $[0, \infty)$ of

nonnegative real numbers is said to be an (n,ρ,m) metric on M, if for each $\mathbf{x} \in \mathbf{M}^{(n)}$:

(1) $d(\mathbf{x}) = 0$ if and only if $\mathbf{x} \in \rho$; and

(2) for each $\mathbf{u} \in \mathbf{M}^{(m)}$, $\mathbf{d}(\mathbf{x}) \leq \Sigma \mathbf{d}(\mathbf{y}\mathbf{u})$, where the sum is over all $\mathbf{y} \in \mathbf{M}^{(n-m)}$ such that $\mathbf{x} = \mathbf{y}\mathbf{v}$ for some $\mathbf{v} \in \mathbf{M}^{(m)}$.

With this notion, a $(2,\Delta_2,1)$ metric is the usual notion of a metric, a $(2,\rho,1)$ metric is the notion of a pseudometric, and the notion of $(n,\rho,1)$ metric is the notion of (n+1) metric defined by K. Menger in the paper Untersuchungen über allgemeine Metrik, Math. Ann. 100, (1928), pp. 75-163.

We investigate the properties of (n,ρ,m) metric spaces M, i.e. the sets equipped with an (n,ρ,m) metric d, with the aim to use them for recognizing images.