

## MODIFICATION OF Rh/Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>/FeCrAI CATALYTIC MODULE: TOWARD ENHANCED EFFECTIVITY OF AROMATIC COMPOUND CONVERSION



N. V. Ruban<sup>1,2</sup>, D. I. Potemkin<sup>1,2</sup>, V. N. Rogozhnikov<sup>1,2</sup>, S. V. Zazhigalov<sup>2</sup>, V. A. Shilov<sup>1,2</sup>, P. V. Snytnikov<sup>1,2</sup>, A. N. Zagoruiko<sup>2</sup>, V. A. Sobyanin<sup>2</sup>

<sup>1</sup> Novosibirsk State University, <sup>2</sup> Boreskov Institute of Catalysis, SB RAS



XXIV International Conference on Chemical Reactors CHEMREACTOR-24



## MODIFICATION OF Rh/Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>/FeCrAI CATALYTIC MODULE: TOWARD ENHANCED EFFECTIVITY OF AROMATIC COMPOUND CONVERSION





- (a) Rh-Ni-CSC structured catalyst at x300;
- (b) Rh-CSC structured catalyst at x300;
- (c) Rh-Ni-CSC structured catalyst at x100.

TEM image (a) and HAADF-STEM element distribution maps (b) for used Rh-Ni-CSC catalyst.





Isooctane (80%) and o-xylene (20%) blend ATR:



Ref.: N. V. Ruban, D. I. Potemkin, V. N. Rogozhnikov, K. I. Shefer, P. V. Snytnikov, V. A. Sobyanin. Rh- and Rh–Ni–MgO-based structured catalysts for on-board syngas production via gasoline processing, International Journal of Hydrogen Energy, Available online 25 February 2021

The work was supported by Russian Foundation for Basic Research under the project № 20-33-90162 (N.V. Ruban).

XXIV International Conference on Chemical Reactors CHEMREACTOR-24