

Active and Stable Ru and Ni-based Catalysts for CO₂, Reforming of Glycerol to Syngas Mert Ozden^{1, †}, Ozge Selcuk^{1, †}, Zafer Say^{2,3}, Yusuf Kocak², Kerem Emre Ercan², Emrah Ozensoy^{2,4,*}, Ahmet K. Avci^{1,*}

¹Department of Chemical Engineering, Bogazici University, Bebek 34342, Istanbul, Turkey ²Department of Chemistry, Bilkent University, 06800, Ankara, Turkey ³Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06510, Ankara, Turkey ⁴UNAM-National Nanotechnology Center, Bilkent University, 06800, Ankara, Turkey

*Corresponding Authors: <u>avciahme@boun.edu.tr</u>, <u>ozensoy@fen.bilkent.edu.tr</u> [†]These authors contributed equally to the work

Motivation and Aim

- Utilization of glycerol (G) and carbon dioxide (CO_2)
- **Glycerol:** Continuously accumulating side product of biodiesel synthesis
- **CO₂:** Global warming effects due to its accumulation
- Dry reforming of glycerol to produce synthesis gas (H₂/CO) at ratios \approx 1
- Ru-based catalysts: High activity and stability in dry reforming conditions of various hydrocarbons, one of the cheapest precious metals
- Ni-based catalysts: High activity in hydrocarbon reforming and cheaper than

Possible Reaction Network

Reaction			ΔH ^o (kJ/mol)
Glycerol Dry Reform	ning C ₃ H ₈ O ₃	$+ CO_2 \rightarrow 4CO + 3H_2 + H_2O$	292
Glycerol Decompos	ition	$C_3H_8O_3 \rightarrow 3CO + 4H_2$	251
Reverse Water Gas	s Shift	$CO_2 + H_2 \rightarrow CO + H_2O$	41
Methane Steam Re	forming	$CH_4 + H_2O \rightarrow CO + 3H_2$	206
Methane Dry Refor	ming	$CH_4 + CO_2 \rightarrow 2CO + 2H_2$	247
Coke Gasification		$C_{(s)} + H_2O \rightarrow CO + H_2$	131
Coke Gasification		$C_{(s)} + 2H_2O \rightarrow CO_2 + 2H_2$	90

Catalyst Preparation

- Supports: ZrO_2 (Z, Alfa Aesar, >99% purity), La_2O_3 (L, Sigma-Aldrich, 99.99% purity), La_2O_3 - ZrO_2 (LZ, Daiichi Kigenso, 9 wt.% La_2O_3)
- Preparation of the 1 wt.% Ru-based (Ru/L, Ru/Z, Ru/LZ) and 5 wt.% Ni-based (Ni/L, Ni/Z, Ni/LZ) incipient wetness impregnation catalysts by method followed by calcination at 800 °C under air for 4 h
- Prior to reaction tests, *in-situ* reduction under pure H₂ flow at 800 °C for 2h

Reaction Conditions

Temperature: 750 °C

Molar Feed Composition (CO₂/G): 1–4

Total Feed Flow: 40 Nml/min (N₂ as balance gas)

Residence Time (W/F)

- Activity tests, 0.25 mg_{cat}.min/Nml 10 mg active catalyst + 710 mg α - Al_2O_3
- Stability tests, 3.75 mg_{cat}.min/Nml

150 mg active catalyst

Activity Tests

Equilibrium Conversion

50

Use of LZ improved ■Ru/L

activities of both Ru and Nibased catalysts at all CO₂/G ratios

- Ru-based catalysts promote H₂ production, whereas Ni promote CO formation
- Ni-based catalysts produce more CH₄ than Ru-based catalysts

Figure 2. Effect of feed ratio on GDR product yields obtained in Ni/L (a), Ni/Z (b) and Ni/LZ experiments (c), and on the composition of the generated syngas (d).

Figure 3. Effect of feed ratio on GDR product yields obtained in Ru/L (a), Ru/Z (b) and Ru/LZ experiments (c), and on the composition of the generated syngas (d).

Stability Tests

Catalyst Characterization

Ru/LZ

Average Ru nanoparticle (NP) size on; Fresh: 5-8 nm Ru/L

After 30h coke overlayer

(Characterization are ongoing for Ni-based catalysts)

Fresh: <1 nm Spent: 1-2 nm

Acknowledgements

TUBITAK [grant number: 117M163], Bogazici University Research Fund [grant] number: BAP-13880], TARLA project [grant number: DPT2006K-120470]

Figure 7. TEM images of the fresh(a-b) and spent(c-d) Ru/LZ **Figure 6.** TEM images of the fresh(a–b) and spent(c–d) Ru/L

overla

Concluding Remarks

- At higher CO_2/G , Ni/LZ was more active than Ru/LZ.
- Increasing CO₂/G improved CO₂ conversion but reduced H₂/CO ratio for all catalysts. This was attributed to increasing effect of RWGS.
- Ni/LZ and Ru/LZ showed exceptional stability with the activity loss of only 12 and 13%, respectively.
- Activity loss in Ru/L was associated mainly with coking, and very small NP growth after 72 h ToS justified stable nature of Ru/LZ.

CHEMREACTOR 24 – XXIV International Conference on Chemical Reactors – September 12–17 2021 – Milan, Italy