

ISOMERIZATION of n-BUTANE and C4 REFINERY FRACTIONS on Pd PROMOTED SULFATED ZIRCONIA. KINETIC ASPECTS and PROCESS MODELING

<u>E.V. Ovchinnikova</u>, S.P. Banzaraktsaeva, G.A. Urzhuntsev, V.A. Chumachenko Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia, evo@catalysis.ru

Catalyst ⁽¹⁻³⁾

Pd-SZ – Pd-modified sulfated zirconium Composition (wt%): 0.5 Pd, $0.8 SO_4^{2-}$, $98.7 ZrO_2$ BET surface: $55.7 m^2/g$ V_{por} : $0.082 cm^3/g$ Mean pore diameter, D_{por} : 4.28 nm

The *n-C*⁴ isomerization catalyzed by sulfated zirconium is an alternative to the chlorinated alumina method.

Highly active and stable Pd-SZ catalysts ⁽¹⁻³⁾ can significantly improve the $n-C_4(A)$ isomerization process and are promising for industrial implementation.

Studies of the kinetic aspects and the process when using real feedstocks, such as C_4 refinery fractions (B_{rf} , C_{rf}), were the goal of the present work.

Feedstock composition ⁽³⁾, %wt.

Products yield ⁽³⁾, %wt.

P: 2.4 MPa; *T*: 140 °C; *WHSV*: 1.5 h⁻¹; *H₂/C4*: 0.2; catalyst size 0.25-0.5 mm *C*⁶ (hexane) *n-C*⁵ (n-pent

(1) RU2693464C1 (2018) https://paterits.coode.com/outert/RU2693464C1/en (2) Chem. Eng. J. 238 (2014) 148 https://doi.org/10.1016/j.cel.2013.08.092 (3) Pet. Chem. 59 (2019) S101 https://doi.org/10.1134/S0455544119130448 Α

Isomerization of C4 refinery fraction B., products yield with variations in WHSV, T, H₂/*n-C*4

Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia, evo@catalysis.ru

P: 2.4 MPa WHSV: 1-2.5 h⁻¹ T: 120 ℃, 140 ℃, 160 ℃ H_2/C_4 : 0.1 (crossed symbols), 0.25 (open symbols), 0.5 (solid symbols) Catalyst size 0.25-0.5 mm

Simplified kinetic model $n-C_{4}H_{10} \Leftrightarrow i-C_{4}H_{10}$ $R_1 = k_1 [n-C_4] (1+1/Kp_1)^{(4)}$ $n-C_4H_{10}+H_2 \implies 2 C_2H_6$ $R_2 = k_2 [n - C_4] [H_2]$ $3 n - C_4 H_{10} + H_2 \implies 4 C_3 H_8$ $R_3 = k_3 [n-C_4] [H_2]$ $5 n-C_4 H_{10} \Rightarrow 4 C_5 H_{12} + H_2$ $R_4 = k_4 [n-C_4]$ $i-C_4H_{10}+H_2 \Rightarrow 2C_2H_6$ $R_5 = k_5 [i - C_4] [H_2]$ $3 i - C_4 H_{10} + H_2 \implies 4 C_3 H_8$ $R_6 = k_6 [i - C_4] [H_2]$ $5 i-C_4H_{10} \Rightarrow 4 C_5H_{12}+H_2$ $R_7 = k_7 [i-C_4]$ $5 C_2 H_6 \Rightarrow 2 C_5 H_{12} + 3 H_2$ $R_8 = k_8 [C_2]$ $C_3H_8 + C_5H_{12} \Rightarrow i-C_4H_{10} + n-C_4H_{10}$ $R_9 = k_9 [C_3] [C_5]$ $W(n-C_4) = -(R_1 + R_2 + 3R_3 + 5R_4) + R_9$ $W(i - C_4) = R_1 - R_5 - 3R_6 - 5R_7 + R_9$ $W(C_2) = 2R_2 + 2R_5 - 5R_8$

 $W(C_3) = 4R_3 - R_9$ $W(C_5) = 4R_4 + 4R_7 + 2R_8 - R_9$

G 60

k 50 40

30 20

 $\widehat{\mathbf{C}}$ 6

Σ(**C**['])

ີ ບ

Σ(**C**3)

(5)

3

10-

Reaction rates W and selectivity S as functions of conversion X in $n - C_4$ (A) isomerization

(4) Appl. Catal. A: Gen. 256 (2003) 243 https://doi.org/10.1016/S0926-860X(03)00404-6 (5) Chem.Eng.Sci. 59 (2004) 4773 https://doi.org/10.1016/j.ces.2004.07.036

Conditions

ISOMERIZATION of n-BUTANE and C4 REFINERY FRACTIONS on Pd PROMOTED SULFATED ZIRCONIA. KINETIC ASPECTS and PROCESS MODELING

<u>E.V. Ovchinnikova</u>, S.P. Banzaraktsaeva, <u>G.A. Urzhuntsev</u>, V.A. Chumachenko Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia, <u>evo@catalysis.ru</u>

Mathematical model⁽⁶⁾

$$\begin{split} \mathbf{P}_{\mathbf{T}_{0}} \frac{dy_{i}}{dl} &= \sum_{j} \gamma_{ij} \overline{\omega_{j}} \ , i = \overline{1,N} \\ \frac{u_{0}P_{0}}{RT_{0}} \ C_{p} \ \frac{dT}{dl} &= \sum_{j} \Delta H_{j} \overline{\omega_{j}} \\ l = 0; \ T(0,r) = T_{in} \ , y_{i}(0,r) = y_{i \ in} \ , i = \overline{1,N} \\ \end{split}$$

Catalyst: **Pd-SZ**, $D_{por} = 4.28$ nm Shape: trilobe, h = 6 mm, $d_{lob} = 1$ mm, circumcircle diameter d = 2 mm Reactor: ID = 9.5 mm; L = 0.14 M WHSV= 1.0-2.5 h⁻¹; U = 0.02-0.06 m/s Molar **H**₂/**n**-**C**₄: 0.1-0.4 P= 2.5 MPa; T= 120-160°C

Effect of temperature (a-d) and feedstock composition (e-h) on the temperature *T*, conversion X_{n-C_i} and products selectivity S_i (wt%) profiles along catalyst bed *L*.

(a-d) : 120 (solid), 140 (open), 160°C (crossed), $WHSV= 2.5 \text{ h}^{-1}; H_2/n-C_4 = 0.1.$

Conclusions

- The highest yield of *i-C*₄, Ymax= 52%, was obtained at X= 62%, WHSV= 1 h⁻¹, H₂/*n-C*₄ = 0.1, T= 140°C.
- For C4 refinery fractions with n-C4 >98%, the process values are nearly the same, but for the feedstock with i-C4 >9%, there is a noticeable increase in the formation of by-products C2, C3, C5.
- To obtain high yield of *i-C4* and to avoid excessive formation of alkanes *C1-C3* the process should be performed at 140-150°C and H2/*n-C4* = 0.1.

(6) Reported by N.V. Vernikovskaya et al. in: Chem.Eng.J. 134 (2007) 228 https://doi.org/10.1016/j.coj/2

⁽e-h) : **A** (solid); **B**_{fr} (open), **C**_{fr} (crossed); WHSV= 1.5 h⁻¹; H₂/n-C₄ = 0.1; T= 150°C.