Combining morphodynamics, hormone signaling, and cell differentiation in computational models

Young scientist school on *Bioinformatics and Systems Biology* Novosibirsk, 28-29 June, 2010

Henrik Jönsson Computational Biology & Biological Physics

LUND UNIVERSITY

what is life?

what is life?

What is Life?

with Mind and Matter and Autobiographical Sketches

ERWIN SCHRÖDINGER

what is life?

the problem

How can differentiation and morphogenesis be regulated in an correlated fashion in multicellular systems?

Plants vs animals

Plants vs animals

Plants vs animals

Robustness and plasticity

Nature 415, 751-754, (2002)

Robustness and plasticity

growth and mechanics in next talk...

spontaneous pattern generation

spontaneous pattern generation

spontaneous pattern generation

THE CHEMICAL BASIS OF MORPHOGENESIS

By A. M. TURING, F.R.S. University of Manchester

(Received 9 November 1951—Revised 15 March 1952)

It is suggested that a system of chemical substances, called morphogens, reacting together and diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis. Such a system, although it may originally be quite homogeneous, may later develop a pattern or structure due to an instability of the homogeneous equilibrium, which is triggered off by random disturbances. Such reaction-diffusion systems are considered in some detail in the case of an isolated ring of cells, a mathematically convenient, though biologically unusual system.

or structure due to an instability of the philip Requilibrium, which is triggered off by random disturbances. Such reaction-diffusion systems are considered in some detail in the case of an isolated ring of cells, a mathematically convenient, though biologically unusual system.

spontaneous pattern generation reactions + diffusion

spontaneous pattern generation regulated transport

Jönsson et al (2006), ...

data

data

data

WUS::GFP

Marcus Heisler

What is science?

What is science?

"eine wissenschaft, aber nicht wissenschaft"

What is science?

"eine wissenschaft, aber nicht wissenschaft"

Immanuel Kant

The criterion of true science lay in its relation to mathematics...

experiment

hypotheses

can this be automatized?

can this be automatized?

use imaging data for generating dynamic templates

can this be automatized?

- use imaging data for generating dynamic templates
- define (differential equation) models in the computer
- use imaging data for generating dynamic templates
- define (differential equation) models in the computer
- use algorithm to update models (parameters and hypotheses)

- use imaging data for generating dynamic templates
- define (differential equation) models in the computer
- use algorithm to update models (parameters and hypotheses)
- analyze model outputs

- use imaging data for generating dynamic templates
- define (differential equation) models in the computer
- use algorithm to update models (parameters and hypotheses)
- analyze model outputs
- model predictions to propose new experiments

- use imaging data for generating dynamic templates
- define (differential equation) models in the computer
- use algorithm to update models (parameters and hypotheses)
- analyze model outputs
- model predictions to propose new experiments

all steps in the computer

image segmentation

image segmentation

COnfocal STack ANalyZer Application COSTANZA

image segmentation

Green WUS::GFP Red membrane stain

Jönsson et al (2005)

Green WUS::GFP Red membrane stain

Green WUS::GFP Red membrane stain

segment cells

Green WUS::GFP Red membrane stain

WUS "concentration"

Ø		ALK1	(1)	Ø	P2 P2P3	Smad1	(9)
Ø		Smad4	(2)	Ø	P6 P6P7	Smad2	(10)
Ø		ALK5	(3)	Ø	PS14N (P11,P12)	Smad7	(11)
$TGF\beta + ALK1$	P13	TA1	(4)		P10 TA1 (P15,P16)		827.55
PSmad1 + Smad4	P18	PS14	(5)	Smad1	P17	PSmad1	(12)
$TGF\beta + ALK5$	P20 ₩ P21	TA5	(6)	Smad2	(P22,P23)	PSmad2	(13)
$P_A + TA1$	Smad7 P27 ₽27 P28	TA1P	(7)	PSmad2 + Smad4	P25 P26	PS24	(14)
$P_B + TA5$	Smad7 $\stackrel{P_{31}}{\underset{P_{32}}{\longrightarrow}}$	TA2P	(8)	PS14	P29 k30	PS14N	(15)
$P_B + TA5$	Smad7 <u>P31</u> <u>P32</u>	TA2P ⁰⁰ (Smad7)	Smad I/S) Smad D (8) Gene	Smad2 Smad4 Expression	29 ₹ k30	PS14N	(15)

mass action dynamics

TA2P (8)

 $\frac{dA_1}{dt} = p_0(1-p_1A_1) - p_{13}T_\beta A_1 + p_{14}T_1$ $\frac{dS_1}{dt} = p_2(1 - p_3S_1) - \frac{p_{15}T_1S_1}{p_{16} + S_1} + p_{17}P_1$ $\frac{dS_4}{dt} = p_4(1 - p_5S_4) - p_{18}P_1S_4 + p_{19}P_{14} - p_{18}P_1S_4 + p_{19}P_1S_4 + p_$ $P_{25}P_{2}S_{4} + P_{26}P_{24}$ $\frac{dS_2}{dt} = p_6(1 - p_7S_2) - \frac{p_{22}T_1S_2}{p_{23} + S_2} + p_{24}P_2$ $\frac{dA_5}{dt} = p_8(1 - p_9A_5) - p_{20}T_\beta A_5 + p_{21}T_5$ $\frac{dS_7}{dt} = \frac{p_{11}P_{14}}{p_{12} + P_{14}} - p_{10}S_7$ $\frac{dP_1}{dt} = \frac{p_{15}T_1S_1}{p_{16}+S_1} - p_{17}P_1 - p_{18}P_1S_4 + p_{19}P_{14}$ $\frac{dP_{14}}{dt} = p_{18}P_1S_4 - p_{19}P_{14} - p_{29}P_{14} + p_{30}P_{14N}$ $\frac{dP_{14N}}{dP_{14N}} = p_{29}P_{14} - p_{30}P_{14N}$ P32

Smad

 $P_B + TA5$

$$\frac{dP_2}{dt} = \frac{p_{22}T_1S_2}{p_{23}+S_2} - p_{24}P_2 - p_{25}P_2S_4 + k_{17}P_{26}$$

$$\frac{dP_{24}}{dt} = p_{25}P_2S_4 - p_{26}P_{24}$$

$$\frac{dT_1}{dt} = p_{13}T_\beta A_1 - p_{14}T_1 - p_{27}S_7P_{P1}T_1 + p_{28}T_{1P}$$

$$\frac{dT_5}{dt} = p_{20}T_\beta A_5 - p_{21}T_5 - p_{31}S_7P_{P2}T_5 + p_{32}T_{5P}$$

$$\frac{dP_A}{dt} = -p_{27}S_7P_AT_1 + p_{28}T_{1P}$$

$$\frac{dP_B}{dt} = -p_{31}S_7P_BT_1 + p_{32}T_{1P}$$

$$\frac{dT_{1P}}{dt} = p_{27}S_7P_AT_1 - p_{28}T_{1P}$$

k30

53

PS14

(15)

PS14N

model definitions А transcription degradation $\frac{V_{max}K_{C}^{n}[A]^{n}}{(K_{C}^{n}+[C]^{n})(K_{A}^{n}+[A]^{n})}$ $\frac{d[W]}{dt}$ k[W] $\frac{d[Ws]}{dt} = k_1[W] - k_2[Ws] + D\nabla^2[Ws]$ protein? diffusion

predictive models VS parameter fitting

optimize / train

filter / test

analyze / validate

Data

computer modeling

computer modeling

...computer manipulation of a mathematical model... (Leopold and Hall 1966)

computer modeling

CLV3 marks stem cells and WUS 'defines' an organizing center

CLV3 extracellular peptide
 CLV1 receptor
 WUS transcription factor

CLV3 marks stem cells and WUS 'defines' an organizing center

• WUS activates CLV3 (stem cells)

CLV3 extracellular peptide
 CLV1 receptor
 WUS transcription factor

- CLV3 marks stem cells and WUS 'defines' an organizing center
- WUS activates CLV3 (stem cells)
- CLV3/CLV1 network repress WUS

CLV3 extracellular peptide
 CLV1 receptor
 WUS transcription factor

What activates WUS?

What activates WUS?

How is the CLV3 to WUS signal mediated?
What activates WUS?

How is the WUS to CLV3 signal mediated?

How is the CLV3 to WUS signal mediated?

What activates WUS?

How is the WUS to CLV3 signal mediated?

How is the CLV3 to WUS signal mediated?

Laser ablation experiment

Reinhardt et al 2003

Laser ablation experiment

Reinhardt et al 2003

WUS network

WUS network

WUS network

Quantitative measures from image

Green WUS::GFP Red membrane stain

Quantitative measures from image

Green WUS::GFP Red membrane stain

WUS network simulation Cell volumes, wall areas, and neighbors from template

Template

Simulation

WUS network simulation Cell volumes, wall areas, and neighbors from template

Template

Laser ablation simulation

Laser ablation simulation

Laser ablation simulation

S Engman

CLV3 + PZ repressors static

CLV3 + PZ repressors static

WUS

CLV3 + PZ repressors static

Activator needed!

WUS

Cytokinin activator?

Gordon et al (2009)

Cytokinin activator?

Gordon et al (2009)

How is the CLV3 to WUS signal mediated?

How is the CLV3 to WUS signal mediated?

Muller et al (2008)

How can clv1 non-null mutants have stronger phenotypes than a clv1 null mutant?

Can differences in mutant implementation alter wild type predictions?

Can differences in mutant implementation alter wild type predictions?

Finding predictive models

Finding predictive models

• Optimize towards wt and 4 single mutants

Finding predictive models

- Optimize towards wt and 4 single mutants
- Test with two double mutants

WT comparison

hypotheses for mutant compared with mutant free models

biological predictions

biological predictions

 Loss-of-signal mutant uses CLV3 sequestration and requires CLV1-CLV3 internalization

biological predictions

- Loss-of-signal mutant uses CLV3 sequestration and requires CLV1-CLV3 internalization
- Interference model leads to abundance of receptors

How is the WUS to CLV3 signal mediated?
How is the WUS to CLV3 signal mediated?

?

Parameter optimization: from WUS

WUS model from Jönsson et al (2005)

Parameter optimization: from WUS

WUS model from Jönsson et al (2005)

'Optimize' hypotheses for WUS -> CLV3

CLV3 expression domain optimization

clv3

Jönsson et al (2003, 2005)

CLV3 expression domain optimization

Jönsson et al (2003, 2005)

P Melke

Thank you! http://www.thep.lu.se/~henrik/

The computable plant Elliot Meyerowitz Marcus Heisler Venu Reddy

Bruce Shapiro Eric Mjolsness Sarah Engman Jeremy Gruel Pawel Krupinski Pontus Melke Patrik Sahlin Christopher Sturk (Computational Biology & Biological Physics Lund University)

Thank you! http://www.thep.lu.se/~henrik/

The computable plant Elliot Meyerowitz Marcus Heisler Venu Reddy

Bruce Shapiro Eric Mjolsness

Sarah Engman Jeremy Gruel Pawel Krupinski Pontus Melke Patrik Sahlin Christopher Sturk (Computational Biology & Biological Physics Lund University)

